174 research outputs found

    A Quantum Monte Carlo Method and Its Applications to Multi-Orbital Hubbard Models

    Full text link
    We present a framework of an auxiliary field quantum Monte Carlo (QMC) method for multi-orbital Hubbard models. Our formulation can be applied to a Hamiltonian which includes terms for on-site Coulomb interaction for both intra- and inter-orbitals, intra-site exchange interaction and energy differences between orbitals. Based on our framework, we point out possible ways to investigate various phase transitions such as metal-insulator, magnetic and orbital order-disorder transitions without the minus sign problem. As an application, a two-band model is investigated by the projection QMC method and the ground state properties of this model are presented.Comment: 10 pages LaTeX including 2 PS figures, to appear in J.Phys.Soc.Jp

    Fermi Surface of The One-dimensional Kondo Lattice Model

    Full text link
    We show a strong indication of the existence of a large Fermi surface in the one-dimensional Kondo lattice model. The characteristic wave vector of the model is found to be kF=(1+ρ)π/2k_F=(1+\rho )\pi /2, ρ\rho being the density of the conduction electrons. This result is at first obtained for a variant of the model that includes an antiferromagnetic Heisenberg interaction JHJ_H between the local moments. It is then directly observed in the conventional Kondo lattice (JH=0)(J_H=0), in the narrow range of Kondo couplings where the long distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure

    Correlation effects in the ground state charge density of Mott-insulating NiO: a comparison of ab-initio calculations and high-energy electron diffraction measurements

    Full text link
    Accurate high-energy electron diffraction measurements of structure factors of NiO have been carried out to investigate how strong correlations in the Ni 3d shell affect electron charge density in the interior area of nickel ions and whether the new ab-initio approaches to the electronic structure of strongly correlated metal oxides are in accord with experimental observations. The generalized gradient approximation (GGA) and the local spin density approximation corrected by the Hubbard U term (LSDA+U) are found to provide the closest match to experimental measurements. The comparison of calculated and observed electron charge densities shows that correlations in the Ni 3d shell suppress covalent bonding between the oxygen and nickel sublattices.Comment: 6 pages, LaTeX and 5 figures in the postscript forma

    Towards a Tetravalent Chemistry of Colloids

    Full text link
    We propose coating spherical particles or droplets with anisotropic nano-sized objects to allow micron-scale colloids to link or functionalize with a four-fold valence, similar to the sp3 hybridized chemical bonds associated with, e.g., carbon, silicon and germanium. Candidates for such coatings include triblock copolymers, gemini lipids, metallic or semiconducting nanorods and conventional liquid crystal compounds. We estimate the size of the relevant nematic Frank constants, discuss how to obtain other valences and analyze the thermal distortions of ground state configurations of defects on the sphere.Comment: Replaced to improve figures. 4 figures Nano Letter

    Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes

    Full text link
    We present a general theory for the equilibrium structure of cylindrical tubules and helical ribbons of chiral lipid membranes. This theory is based on a continuum elastic free energy that permits variations in the direction of molecular tilt and in the curvature of the membrane. The theory shows that the formation of tubules and helical ribbons is driven by the chirality of the membrane. Tubules have a first-order transition from a uniform state to a helically modulated state, with periodic stripes in the tilt direction and ripples in the curvature. Helical ribbons can be stable structures, or they can be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and epsf.st

    Correlation effects in ionic crystals: I. The cohesive energy of MgO

    Full text link
    High-level quantum-chemical calculations, using the coupled-cluster approach and extended one-particle basis sets, have been performed for (Mg2+)n (O2-)m clusters embedded in a Madelung potential. The results of these calculations are used for setting up an incremental expansion for the correlation energy of bulk MgO. This way, 96% of the experimental cohesive energy of the MgO crystal is recovered. It is shown that only 60% of the correlation contribution to the cohesive energy is of intra-ionic origin, the remaining part being caused by van der Waals-like inter-ionic excitations.Comment: LaTeX, 20 pages, no figure

    Bond and charge density waves in the isotropic interacting two-dimensional quarter-filled band and the insulating state proximate to organic superconductivity

    Full text link
    We report two surprising results regarding the nature of the spatial broken symmetries in the two-dimensional (2D), quarter-filled band with strong electron-electron interactions. First, in direct contradiction to the predictions of one-electron theory, we find a coexisting ``bond-order and charge density wave'' (BCDW) insulating ground state in the 2D rectangular lattice for all anisotropies, including the isotropic limit. Second, we find that the BCDW further coexists with a spin-density wave (SDW) in the range of large anisotropy. Further, in contrast to the interacting half-filled band, in the interacting quarter-filled band there are two transitions: first, a similar singlet-to-AFM/SDW transition for large anisotropy and second, an AFM/SDW-to-singlet transition at smaller anisotropy. We discuss how these theoretical results apply to the insulating states that are proximate to the superconducting states of 2:1 cationic charge-transfer solids (CTS). An important consequence of this work is the suggestion that organic superconductivity is related to the proximate Coulomb-induced BCDW, with the SDW that coexists for large anisotropies being also a consequence of the BCDW, rather than the driver of superconductivity.Comment: 29 pages, 18 eps figures. Revised with new appendices; to appear in Phys. Rev. B 62, Nov 15, 200

    Phenomenological Models for the Gap Anisotropy of Bi-2212 as Measured by ARPES

    Full text link
    Recently, high resolution angle-resolved photoemission spectroscopy has been used to determine the detailed momentum dependence of the superconducting gap in the high temperature superconductor Bi-2212. In this paper, we first describe tight binding fits to the normal state dispersion and superlattice modulation effects. We then discuss various theoretical models in light of the gap measurements. We find that the simplest model which fits the data is the anisotropic s-wave gap cos(kx)cos(ky)\cos(k_x)\cos(k_y), which within a one-band BCS frame- work suggests the importance of next near neighbor Cu-Cu interactions. Various alternative interpretations of the observed gap are also discussed, along with the implications for microscopic theories of high temperature superconductors.Comment: 14 pages, revtex, 9 uuencoded postscript figure

    Comparison of techniques for computing shell-model effective operators

    Get PDF
    Different techniques for calculating effective operators within the framework of the shell model using the same effective interaction and the same excitation spaces are presented. Starting with the large-basis no-core approach, we compare the time-honored perturbation-expansion approach and a model-space truncation approach. Results for the electric quadrupole and magnetic dipole operators are presented for 6^6Li. The convergence trends and dependence of the effective operators on differing excitation spaces and Pauli Q-operators is studied. In addition, the dependence of the electric-quadrupole effective charge on the harmonic-oscillator frequency and the mass number, for A=5,6, is investigated in the model-space truncation approach.Comment: 18 pages. REVTEX. 4 PostScript figure

    Computational Nuclear Physics and Post Hartree-Fock Methods

    Full text link
    We present a computational approach to infinite nuclear matter employing Hartree-Fock theory, many-body perturbation theory and coupled cluster theory. These lectures are closely linked with those of chapters 9, 10 and 11 and serve as input for the correlation functions employed in Monte Carlo calculations in chapter 9, the in-medium similarity renormalization group theory of dense fermionic systems of chapter 10 and the Green's function approach in chapter 11. We provide extensive code examples and benchmark calculations, allowing thereby an eventual reader to start writing her/his own codes. We start with an object-oriented serial code and end with discussions on strategies for porting the code to present and planned high-performance computing facilities.Comment: 82 pages, to appear in Lecture Notes in Physics (Springer), "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor
    corecore