29,500 research outputs found

    Frame synchronization for the Galileo code

    Get PDF
    Results are reported on the performance of the Deep Space Network's frame synchronizer for the (15,1/4) convolutional code after Viterbi decoding. The threshold is found that optimizes the probability of acquiring true sync within four frames using a strategy that requires next frame verification

    Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle

    Get PDF
    U(III) complexes of the conformationally flexible, small-cavity macrocycle trans-calix[2]benzene[2]pyrrolide (L)2–, [U(L)X] (X = O-2,6-tBu2C6H3, N(SiMe3)2), have been synthesized from [U(L)BH4] and structurally characterized. These complexes show binding of the U(III) center in the bis(arene) pocket of the macrocycle, which flexes to accommodate the increase in the steric bulk of X, resulting in long U–X bonds to the ancillary ligands. Oxidation to the cationic U(IV) complex [U(L)X][B(C6F5)4] (X = BH4) results in ligand rearrangement to bind the smaller, harder cation in the bis(pyrrolide) pocket, in a conformation that has not been previously observed for (L)2–, with X located between the two ligand arene rings

    Node synchronization schemes for the Big Viterbi Decoder

    Get PDF
    The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods

    Event-based simulation of interference with alternatingly blocked particle sources

    Full text link
    We analyze the predictions of an event-based corpuscular model for interference in the case of two-beam interference experiments in which the two sources are alternatingly blocked. We show that such experiments may be used to test specific predictions of the corpuscular model.Comment: FPP6 - Foundations of Probability and Physics 6, edited by A. Khrennikov et al., AIP Conference Proceeding

    Surface magnetic canting in a ferromagnet

    Full text link
    The surface magnetic canting (SMC) of a semi-infinite film with ferromagnetic exchange interaction and competing bulk and surface anisotropies is investigated via a nonlinear mapping formulation of mean-field theory previously developed by our group [L. Trallori et al., Int. J. Mod. Phys. B 10, 1935-1988 (1996)], and extended to the case where an external magnetic field is applied to the system. When the field H is parallel to the film plane, the condition for SMC is found to be the same as that recently reported by Popov and Pappas [Phys. Rev. B 64, 184401 (2001)]. The case of a field H applied perpendicularly to the film plane is also investigated. In both cases, the zero-temperature equilibrium configuration is easily determined by our theoretical approach.Comment: 4 pages, 3 figure

    Anomalous exponents at the onset of an instability

    Full text link
    Critical exponents are calculated exactly at the onset of an instability, using asymptotic expansiontechniques. When the unstable mode is subject to multiplicative noise whose spectrum at zero frequency vanishes, we show that the critical behavior can be anomalous, i.e. the mode amplitude X scales with departure from onset \mu as  μβ ~ \mu^\beta with an exponent β\beta different from its deterministic value. This behavior is observed in a direct numerical simulation of the dynamo instability and our results provide a possible explanation to recent experimental observations

    Low-lying bifurcations in cavity quantum electrodynamics

    Get PDF
    The interplay of quantum fluctuations with nonlinear dynamics is a central topic in the study of open quantum systems, connected to fundamental issues (such as decoherence and the quantum-classical transition) and practical applications (such as coherent information processing and the development of mesoscopic sensors/amplifiers). With this context in mind, we here present a computational study of some elementary bifurcations that occur in a driven and damped cavity quantum electrodynamics (cavity QED) model at low intracavity photon number. In particular, we utilize the single-atom cavity QED Master Equation and associated Stochastic Schrodinger Equations to characterize the equilibrium distribution and dynamical behavior of the quantized intracavity optical field in parameter regimes near points in the semiclassical (mean-field, Maxwell-Bloch) bifurcation set. Our numerical results show that the semiclassical limit sets are qualitatively preserved in the quantum stationary states, although quantum fluctuations apparently induce phase diffusion within periodic orbits and stochastic transitions between attractors. We restrict our attention to an experimentally realistic parameter regime.Comment: 13 pages, 10 figures, submitted to PR

    Antarctic Ocean polynyas

    Get PDF
    The spatial and temporal variability of sea ice concentrations derived from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures are presented. Emphasis is on the continental shelf region of the Ross Sea during 1984, when supporting data were obtained from oceanographic stations and moored instruments. The effects of the large spring polynya in the Ross Sea on summer insolation, surface heat layer storage, and late autumn ice formation are described

    Primordial magnetic fields constrained by CMB anisotropies and dynamo cosmology

    Full text link
    Magneto-curvature stresses could deform magnetic field lines and this would give rise to back reaction and restoring magnetic stresses [Tsagas, PRL (2001)]. Barrow et al [PRD (2008)] have shown in Friedman universe the expansion to be slow down in spatial section of negative Riemann curvatures. From Chicone et al [CMP (1997)] paper, proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature, here one applies the Barrow-Tsagas ideas to cosmic dynamos. Fast dynamo covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations [Clarkson et al, MNRAS (2005)] is considered. In absence of advection a fast dynamo is also obtained. Viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data (δBB≈10−5\frac{{\delta}B}{B}\approx{10^{-5}}), one computes stretching δVyVy=1.5δBB≈1.5×10−5\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}. Zeldovich et al has computed the maximum magnetic growth rate as γmax≈8.0×10−1t−1{\gamma}_{max}\approx{8.0{\times}10^{-1}t^{-1}}. From COBE data one computes a lower growth rate for the magnetic field as γCOBE≈6.0×10−6t−1{\gamma}_{COBE}\approx{6.0{\times}10^{-6}t^{-1}}, well-within Zeldovich et al estimate. Instead of the Harrison value B≈t4/3B\approx{t^{{4/3}}} one obtains the lower primordial field B≈10−6tB\approx{10^{-6}t} which yields the B≈10−6GB\approx{10^{-6}G} at the 1s1s Big Bang time.Comment: Dept of theoretical physics-UERJ-Brasi

    Universal Irreversibility of Normal Quantum Diffusion

    Full text link
    Time-reversibility measured by the deviation of the perturbed time-reversed motion from the unperturbed one is examined for normal quantum diffusion exhibited by four classes of quantum maps with contrastive physical nature. Irrespective of the systems, there exist a universal minimal quantum threshold above which the system completely loses the past memory, and the time-reversed dynamics as well as the time-reversal characteristics asymptotically trace universal curves independent of the details of the systems.Comment: 4 pages, 4 figure
    • …
    corecore