284 research outputs found
Pseudogap in the Optical Spectra of UPd_2Al_3
The in-plane optical conductivity of UPd_2Al_3 was measured at temperatures
K in the spectral range from 1 cm^{-1} to 40 cm^{-1} (0.14
meV to 5 meV). As the temperature decreases below 25 K a well pronounced
pseudogap of 0.2 meV develops in the optical response. In addition we observe a
narrow conductivity peak at zero frequency which at 2 K is less than 1 cm^{-1}
wide but which contains only a fraction of the delocalized carriers. The gap in
the electronic excitations might be an inherent feature of the heavy fermioin
ground state.Comment: 4 pages, 4 figures (submitted to Phys. Rev. Lett.
X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions
In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical
behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the
experimental data are reanalyzed, taking into account recent theoretical
results on order-parameter profiles in the crossover regime between ordinary
and normal transitions. Excellent agreement between theoretical expectations
and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.
Incorporating interactive 3-dimensional graphics in astronomy research papers
Most research data collections created or used by astronomers are
intrinsically multi-dimensional. In contrast, all visual representations of
data presented within research papers are exclusively 2-dimensional. We present
a resolution of this dichotomy that uses a novel technique for embedding
3-dimensional (3-d) visualisations of astronomy data sets in electronic-format
research papers. Our technique uses the latest Adobe Portable Document Format
extensions together with a new version of the S2PLOT programming library. The
3-d models can be easily rotated and explored by the reader and, in some cases,
modified. We demonstrate example applications of this technique including: 3-d
figures exhibiting subtle structure in redshift catalogues, colour-magnitude
diagrams and halo merger trees; 3-d isosurface and volume renderings of
cosmological simulations; and 3-d models of instructional diagrams and
instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with
3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd
Disorder-to-order transition in the magnetic and electronic properties of URh_2Ge_2
We present a study of annealing effects on the physical properties of
tetragonal single--crystalline URh_2Ge_2. This system, which in as-grown form
was recently established as the first metallic 3D random-bond heavy-fermion
spin glass, is transformed by an annealing treatment into a long-range
antiferromagnetically (AFM) ordered heavy-fermion compound. The transport
properties, which in the as-grown material were dominated by the structural
disorder, exhibit in the annealed material signs of typical metallic behavior
along the crystallographic a axis. From our study URh_2Ge_2 emerges as
exemplary material highlighting the role and relevance of structural disorder
for the properties of strongly correlated electron systems. We discuss the link
between the magnetic and electronic behavior and how they are affected by the
structural disorder.Comment: Phys. Rev. B, in print (scheduled 1 Mar 2000
Spin-fluctuations in the quarter-filled Hubbard ring : significances to LiVO
Using the quantum Monte Carlo method, we investigate the spin dynamics of
itinerant electrons in the one-dimensional Hubbard system. Based on the model
calculation, we have studied the spin-fluctuations in the quarter-filled
metallic Hubbard ring, which is aimed at the vanadium ring or chain defined
along corner-sharing tetrahedra of LiVO, and found the dramatic changes
of magnetic responses and spin-fluctuation characteristics with the
temperature. Such results can explain the central findings in the recent
neutron scattering experiment for LiVO.Comment: 5 pages, 3 figure
Spiral spin-liquid and the emergence of a vortex-like state in MnScS
Spirals and helices are common motifs of long-range order in magnetic solids,
and they may also be organized into more complex emergent structures such as
magnetic skyrmions and vortices. A new type of spiral state, the spiral
spin-liquid, in which spins fluctuate collectively as spirals, has recently
been predicted to exist. Here, using neutron scattering techniques, we
experimentally prove the existence of a spiral spin-liquid in MnScS by
directly observing the 'spiral surface' - a continuous surface of spiral
propagation vectors in reciprocal space. We elucidate the multi-step ordering
behavior of the spiral spin-liquid, and discover a vortex-like triple-q phase
on application of a magnetic field. Our results prove the effectiveness of the
- Hamiltonian on the diamond lattice as a model for the spiral
spin-liquid state in MnScS, and also demonstrate a new way to realize a
magnetic vortex lattice.Comment: 10 pages, 11 figure
Surface critical behavior of bcc binary alloys
The surface critical behavior of bcc binary alloys undergoing a continuous
B2-A2 order-disorder transition is investigated in the mean-field (MF)
approximation. Our main aim is to provide clear evidence for the fact that
surfaces which break the two-sublattice symmetry generically display the
critical behavior of the NORMAL transition, whereas symmetry-preserving
surfaces exhibit ORDINARY surface critical behavior. To this end we analyze the
lattice MF equations for both types of surfaces in terms of nonlinear
symplectic maps and derive a Ginzburg-Landau model for the symmetry-breaking
(100) surface. The crucial feature of the continuum model is the emergence of
an EFFECTIVE ORDERING (``staggered'') SURFACE FIELD, which depends on
temperature and the other lattice model parameters, and which explains the
appearance of NORMAL critical behavior for symmetry-breaking surfaces.Comment: 16 pages, REVTeX 3.0, 13 EPSF figures, submitted to Phys. Rev.
Orbital state and magnetic properties of LiV_2 O_4
LiV_2 O_4 is one of the most puzzling compounds among transition metal oxides
because of its heavy fermion like behavior at low temperatures. In this paper
we present results for the orbital state and magnetic properties of LiV_2 O_4
obtained from a combination of density functional theory within the local
density approximation and dynamical mean-field theory (DMFT). The DMFT
equations are solved by quantum Monte Carlo simulations. The trigonal crystal
field splits the V 3d orbitals such that the a_{1g} and e_{g}^{pi} orbitals
cross the Fermi level, with the former being slightly lower in energy and
narrower in bandwidth. In this situation, the d-d Coulomb interaction leads to
an almost localization of one electron per V ion in the a_{1g} orbital, while
the e_{g}^{pi} orbitals form relatively broad bands with 1/8 filling. 2The
theoretical high-temperature paramagnetic susceptibility chi(T) follows a
Curie-Weiss law with an effective paramagnetic moment p_{eff}=1.65 in agreement
with the experimental results.Comment: 11 pages, 10 figures, 2 table
- …
