1,288 research outputs found

    Strategies for Systemic Change:Youth Community Organizing to Disruptthe School-to-Prison Nexus

    Get PDF
    The school disciplinary landscape across the United States changed significantly through the enactment of policies that criminalize students’ behaviors during the 1990s and 2000s. Schools began to involve the police and criminal legal system in school disciplinary issues that used to be handled by school administrators. This shift led youth of Color1 to increasingly come into contact with the juvenile legal system through school suspensions, expulsions, and referrals to alternative schools—what we characterize as the school-toprison nexus. Conceptualizing the school-to-prison pipeline as a nexus, or interlocking system of power over youth, allows us to understand how the criminalization of youth is a systemic problem that demands structural change and interventions across multiple levels of analysis and settings, including local schools, school districts, police departments, and state policies. Although important research has documented the ways that Black and Latino youth are referred to the juvenile legal system through punitive school policies, there has been less attention to the actions youth are taking to critique and dismantle these policies. Youth community organizing (YCO) against the school-to-prison nexus represents an arena of youth activism that deserves further attention and analysis. In this chapter, we define YCO as groups that create spaces for young people to think critically about their everyday social conditions, identify root causes of social problems, and build political power and voice to create policy solutions and change in their communities (Ginwright, Noguera, & Cammarota, 2006; Kirshner, 2015; Watts, Griffith, & Abdul- Adil, 1999)

    Formulae for Growth Factors In Expanding Universes Containing Matter and a Cosmological Constant

    Full text link
    Formulae are presented for the linear growth factor D/a and its logarithmic derivative dlnD/dlna in expanding Friedmann-Robertson-Walker Universes with arbitrary matter and vacuum densities. The formulae permit rapid and stable numerical evaluation. A fortran program is available at http://casa.colorado.edu/~ajsh/growl/ .Comment: 7 pages, including 3 embedded PostScript figures. Minor changes to agree with version accepted for publication in MNRAS. Fortran package growl.tar.gz available at http://casa.colorado.edu/~ajsh/growl

    Long Gamma-Ray Bursts and Type Ic Core Collapse Supernovae Have Similar Locations in Hosts

    Full text link
    When the afterglow fades at the site of a long-duration gamma-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB in high-redshift galaxies had different environments from a collection of core-collapse environments, which were identified from their colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 504 supernovae with types assigned based on their spectra that are located in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SN Ia) and some varieties of core-collapse supernovae (SN II and SN Ib) follow the galaxy light, but the SN Ic (like LGRB) are much more likely to erupt in the brightest regions of their hosts. The high-redshift hosts of LGRB are overwhelmingly irregulars, without bulges, while many low redshift SN Ic hosts are spirals with small bulges. When we remove the bulge light from our low-redshift sample, the SN Ic and LGRB distributions agree extremely well. If both LGRB and SN Ic stem from very massive stars, then it seems plausible that the conditions necessary for forming SN Ic are also required for LGRB. Additional factors, including metallicity, may determine whether the stellar evolution of a massive star leads to a LGRB with an underlying broad-lined SN Ic, or simply a SN Ic without a gamma-ray burst.Comment: Accepted by the Astrophysical Journal, 12 pages, 3 tables, 4 figures, SN sample size increases from 263 to 504 in v2, varying host magnitude and distance shown not to introduce systematic error in measurement

    “This was 1976 reinvented”: The role of framing in the development of a South African youth movement

    Get PDF
    The literature on contemporary youth organizing has documented psychological benefits associated with participation and some evidence of local political impact. But how do local organizing campaigns transform into regional or national movements? This is a practical question facing youth organizers and one that calls for attention from researchers. In this article, we draw on 3 years of ethnographic fieldwork with South Africa\u27s Equal Education (EE) to analyze collective action frames that enabled EE youth to assert legitimacy and construct shared aims across locales. Our findings focus on how youth constructed historical continuity frames that lent them legitimacy as upholders of the South African freedom struggle and flexible problem frames that linked young people\u27s local struggles, such as inadequate sanitation or broken windows at their schools, to a national policy agenda. We discuss connections to other youth movements and implications for the interdisciplinary youth organizing field

    The Environment of ``E+A'' Galaxies

    Get PDF
    The violent star formation history of ``E+A'' galaxies and their detection almost exclusively in distant clusters is frequently used to link them to the ``Butcher-Oemler effect'' and to argue that cluster environment influences galaxy evolution. From 11113 spectra in the Las Campanas Redshift Survey, we have obtained a unique sample of 21 nearby ``E+A" galaxies. Surprisingly, a large fraction (about 75%) of these ``E+A''s lie in the field. Therefore, interactions with the cluster environment, in the form of the ICM or cluster potential, are not essential for ``E+A'' formation. If one mechanism is responsible for ``E+A''s, their existence in the field and the tidal features in at least 5 of the 21 argue that galaxy-galaxy interactions and mergers are that mechanism. The most likely environments for such interactions are poor groups, which have lower velocity dispersions than clusters and higher galaxy densities than the field. In hierarchical models, groups fall into clusters in greater numbers at intermediate redshifts than they do today. Thus, the Butcher-Oemler effect may reflect the typical evolution of galaxies in groups and in the field rather than the influence of clusters on star formation in galaxies. This abstract is abridged.Comment: 39 uuencoded, compressed pages (except Fig 1), complete preprint at ftp://ociw.edu/pub/aiz/eplusa.ps, ApJ, submitte

    A Local Hubble Bubble from SNe Ia?

    Full text link
    We analyze the monopole in the peculiar velocities of 44 Type Ia supernovae (SNe Ia) to test for a local void. The sample extends from 20 to 300 Mpc/h, with distances, deduced from light-curve shapes, accurate to ~6%. Assuming Omega_m=1 and Omega_lambda=0, the most significant deviation we find from the Hubble law is an outwards flow of (6.6+/-2.2)% inside a sphere of radius 70 Mpc/h as would be produced by a void of ~20% underdensity surrounded by a dense shell. This shell roughly coincides with the local Great Walls. Monte Carlo analyses, using Gaussian errors or bootstrap resampling, show the probability for chance occurrence of this result out of a pure Hubble flow to be ~2%. The monopole could be contaminated by higher moments of the velocity field, especially a quadrupole, which are not properly probed by the current limited sky coverage. The void would be less significant if Omega_m is low and Omega_lambda is high. It would be more significant if one outlier is removed from the sample, or if the size of the void is constrained a-priori. This putative void is not in significant conflict with any of the standard cosmological scenarios. It suggests that the Hubble constant as determined within 70 Mpc/h could be overestimated by ~6% and the local value of Omega may be underestimated by ~20%. While the present evidence for a local void is marginal in this data set, the analysis shows that the accumulation of SNe Ia distances will soon provide useful constraints on elusive and important aspects of regional cosmic dynamics.Comment: 21 pages, 3 figures. Slightly revised version. To appear in ApJ, 503, Aug. 20, 199

    Probabilistic Assessment of Drought Characteristics using a Hidden Markov Model

    Get PDF
    Droughts are evaluated using drought indices that measure the departure of meteorological and hydrological variables such as precipitation and stream flow from their long-term averages. While there are many drought indices proposed in the literature, most of them use pre-defined thresholds for identifying drought classes ignoring the inherent uncertainties in characterizing droughts. In this study, a hidden Markov model (HMM) [1] is developed for probabilistic classification of drought states. The HMM captures space and time dependence in the data. The proposed model is applied to assess drought characteristics in Indiana using monthly precipitation and stream flow data. The comparison of HMM based drought index with standard precipitation index (SPI) [2] suggests that the HMM index provides more intuitive results

    The Peculiar Type Ic Supernova 1997ef: Another Hypernova

    Get PDF
    SN 1997ef has been recognized as a peculiar supernova from its light curve and spectral properties. The object was classified as a Type Ic supernova (SN Ic) because its spectra are dominated by broad absorption lines of oxygen and iron, lacking any clear signs of hydrogen or helium line features. The light curve is very different from that of previously known SNe Ic, showing a very broad peak and a slow tail. The strikingly broad line features in the spectra of SN 1997ef, which were also seen in the hypernova SN 1998bw, suggest the interesting possibility that SN 1997ef may also be a hypernova. The light curve and spectra of SN 1997ef were modeled first with a standard SN~Ic model assuming an ordinary kinetic energy of explosion EK=1051E_{\rm K} = 10^{51} erg. The explosion of a CO star of mass MCO≈6M⊙M_{\rm CO} \approx 6 M_\odot gives a reasonably good fit to the light curve but clearly fails to reproduce the broad spectral features. Then, models with larger masses and energies were explored. Both the light curve and the spectra of SN 1997ef are much better reproduced by a C+O star model with EK=E_{\rm K} = 8 \e{51} erg and MCO=10M⊙M_{\rm CO} = 10 M_\odot. Therefore, we conclude that SN 1997ef is very likely a hypernova on the basis of its kinetic energy of explosion. Finally, implications for the deviation from spherical symmetry are discussed in an effort to improve the light curve and spectral fits.Comment: "To appear in the Astrophysical Journal, Vol.534 (2000)
    • 

    corecore