298 research outputs found

    Development of a framework for automated systematic testing of safety-critical embedded systems

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”In this paper we introduce the development of a framework for testing safety-critical embedded systems based on the concepts of model-based testing. In model-based testing the test cases are derived from a model of the system under test. In our approach the model is an automaton model that is automatically extracted from the C-source code of the system under test. Beside random test data generation the test case generation uses formal methods, in detail model checking techniques. To find appropriate test cases we use the requirements defined in the system specification. To cover further execution paths we developed an additional, to our best knowledge, novel method based on special structural coverage criteria. We present preliminary results on the model extraction using a concrete industrial case study from the automotive domain

    Optimization of PECVD process for ultra thin tunnel SiOx film as passivation layer for silicon heterojunction solar cells

    Get PDF
    Ultra thin silicon oxide a SiOx H films have been grown by means of plasma enhanced chemical vapor deposition PECVD to replace the standard hydrogenated amorphous silicon a Si H passivation layer for silicon heterojunction solar cells to reduce parasitic absorption. Additionally, silicon oxide surfaces are well known as superior substrates for the nucleation enhancement for nanocrystalline silicon doped films. Symmetrical passivation samples were fabricated with variable a SiOx H layers with a thickness of 10 1.5 nm and characterized after several annealing steps 25 650 C . The best value reached so far on lt;100 gt; oriented Si wafers is implied open circuit voltage of 686 mV and minority carrier lifetime of 1.6 ms after annealing at 300 C. Such values were found to be reproducible even for ultra thin a SiOx H layers 1.5 n

    Exact Gap Computation for Code Coverage Metrics in ISO-C

    Full text link
    Test generation and test data selection are difficult tasks for model based testing. Tests for a program can be meld to a test suite. A lot of research is done to quantify the quality and improve a test suite. Code coverage metrics estimate the quality of a test suite. This quality is fine, if the code coverage value is high or 100%. Unfortunately it might be impossible to achieve 100% code coverage because of dead code for example. There is a gap between the feasible and theoretical maximal possible code coverage value. Our review of the research indicates, none of current research is concerned with exact gap computation. This paper presents a framework to compute such gaps exactly in an ISO-C compatible semantic and similar languages. We describe an efficient approximation of the gap in all the other cases. Thus, a tester can decide if more tests might be able or necessary to achieve better coverage.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Case study of ozone anomalies over northern Russia in the 2015/2016 winter: measurements and numerical modelling

    Get PDF
    Episodes of extremely low ozone columns were observed over the territory of Russia in the Arctic winter of 2015/2016 and the beginning of spring 2016. We compare total ozone columns (TOCs) from different remote sensing techniques (satellite and ground-based observations) with results of numerical modelling over the territory of the Urals and Siberia for this period. We demonstrate that the provided monitoring systems (including the new Russian Infrared Fourier Spectrometer IKFS-2) and modern three-dimensional atmospheric models can capture the observed TOC anomalies. However, the results of observations and modelling show differences of up to 20&thinsp;%–30&thinsp;% in TOC measurements. Analysis of the role of chemical and dynamical processes demonstrates that the observed short-term TOC variability is not a result of local photochemical loss initiated by heterogeneous halogen activation on particles of polar stratospheric clouds that formed under low temperatures in the mid-winter.</p

    Nanocrystalline silicon oxide interlayer in monolithic perovskite silicon heterojunction tandem solar cells with total current density gt;39 mA cm2

    Get PDF
    Silicon heterojunction solar cells are implemented as bottom cells in monolithic perovskite silicon tandem solar cells. Commonly they are processed with a smooth front side to facilitate wet processing of the lead halide perovskite cell on top. The inherent drawback of this design, namely, enhanced reflection of the cell, can be significantly reduced by replacing the amorphous or nanocrystalline silicon front side n layer of the silicon cell by a nanocrystalline silicon oxide n layer. It is deposited with the same commonly used plasma enhanced chemical vapor deposition and can be tuned to feature opto electrical properties for enhanced light coupling into the Si bottom cell, namely, low parasitic absorption and an intermediate refractive index of 2.6. We demonstrate that a 80 100 nm thick layer results in 0.9 mA cm 2 current gain in the bottom cell yielding tandem cells with a top cell bottom cell total current above 39 mA cm 2 . These first nc SiO x H coupled tandem cells reach an efficiency gt;23.

    HOCl chemistry in the Antarctic stratospheric vortex 2002, as observed with the Michelson interferometer for passive atmospheric sounding (MIPAS)

    Get PDF
    In the 2002 Antarctic polar vortex enhanced HOCl mixing ratios were detected by the Michelson Interferometer for Passive Atmospheric Sounding both at altitudes of around 35 km (1000K potential temperature), where HOCl abundances are ruled by gas phase chemistry and at around 18–24 km (475–625 K), which belongs to the altitude domain where heterogeneous chlorine chemistry is relevant. At altitudes of 33 to 40 km polar vortex HOCl mixing ratios were found to be around 0.14 ppbv as long as the polar vortex was intact, centered at the pole, and thus received relatively little sunlight. This is the altitude region where in midlatitudinal and tropic atmospheres peak HOCl mixing ratios significantly above 0.2 ppbv (in terms of daily mean values) are observed. After deformation and displacement of the polar vortex in the course of a major warming, ClO-rich vortex air was more exposed to sunlight, where enhanced HOx abundances led to largely increased HOCl mixing ratios (up to 0.3 ppbv), exceeding typical midlatitudinal and tropical amounts significantly. The HOCl increase was preceded by an increase of ClO. Model runs could reproduce these measurements only when the Stimpfle et al. (1979) rate constant for the reaction ClO+HO2→HOCl+O2 was used but not with the current JPL recommendation. At an altitude of 24 km, HOCl mixing ratios of up to 0.15 ppbv were detected. This HOCl enhancement, which is already visible in 18 September data, is attributed to heterogeneous chemistry, which is in agreement with observations of polar stratospheric clouds. The measurements were compared to a model run where no polar stratospheric clouds appeared during the observation period. The fact that HOCl still was produced in the model run suggests that a significant part of HOCl was generated from ClO rather than directly via heterogeneous reaction. Excess ClO, lower ClONO2 and earlier loss of HOCl in the measurements are attributed to ongoing heterogeneous chemistry which is not reproduced by the model. On 11 October, polar vortex mean daytime mixing ratios were only 0.03 ppbv

    Kinetics of Fluorescein in Tear Film After Eye Drop Instillation in Beagle Dogs: Does Size Really Matter?

    Get PDF
    The study aimed to determine the impact of drop size on tear film pharmacokinetics and assess important physiological parameters associated with ocular drug delivery in dogs. Two separate experiments were conducted in eight healthy Beagle dogs: (i) Instillation of one drop (35 μl) or two drops (70 μl) of 1% fluorescein solution in each eye followed by tear collections with capillary tubes from 0 to 180 min; (ii) Instillation of 10 to 100 μl of 0.1% fluorescein in each eye followed by external photography with blue excitation filter (to capture periocular spillage of fluorescein) and tear collections from 1 to 20 min (to capture tear turnover rate; TTR). Fluorescein concentrations were measured in tear samples with a fluorophotometer. The TTR was estimated based upon non-linear mixed-effects analysis of fluorescein decay curves. Tear film pharmacokinetics were not superior with instillation of two drops vs. one drop based on tear film concentrations, residual tear fluorescence, and area under the fluorescein-time curves (P ≥ 0.163). Reflex TTR varied from 20.2 to 30.5%/min and did not differ significantly (P = 0.935) among volumes instilled (10–100 μl). The volumetric capacity of the canine palpebral fissure (31.3 ± 8.9 μl) was positively correlated with the palpebral fissure length (P = 0.023). Excess solution was spilled over the periocular skin in a volume-dependent manner, predominantly in the lower eyelid, medial canthus and lateral canthus. In sum, a single drop is sufficient for topical administration in dogs. Any excess is lost predominantly by spillage over the periocular skin as well as accelerated nasolacrimal drainage

    Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    Get PDF
    The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical–dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of ∼ 2 ppmv or 117 DU in terms of column ozone in mid-March. The stratosphere was denitrified by about 4–8 ppbv HNO3 and dehydrated by about 0.6–1 ppmv H2O from the middle to the end of February. While ozone loss was quite strong, but not as strong as in 2010/2011, denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years

    Comparison of ECHAM5/MESSy Atmospheric Chemistry (EMAC) simulations of the Arctic winter 2009/2010 and 2010/2011 with Envisat/MIPAS and Aura/MLS observations

    Get PDF
    We present model simulations with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalyses for the Arctic winters 2009/2010 and 2010/2011. This study is the first to perform an extensive assessment of the performance of the EMAC model for Arctic winters as previous studies have only made limited evaluations of EMAC simulations which also were mainly focused on the Antarctic winter stratosphere. We have chosen the two extreme Arctic winters 2009/2010 and 2010/2011 to evaluate the formation of polar stratospheric clouds (PSCs) and the representation of the chemistry and dynamics of the polar winter stratosphere in EMAC. The EMAC simulations are compared to observations by the Michelson Interferometer for Passive Atmospheric Soundings (Envisat/MIPAS) and the observations from the Aura Microwave Limb Sounder (Aura/MLS). The Arctic winter 2010/2011 was one of the coldest stratospheric winters on record, leading to the strongest depletion of ozone measured in the Arctic. The Arctic winter 2009/2010 was, from the climatological perspective, one of the warmest stratospheric winters on record. However, it was distinguished by an exceptionally cold stratosphere (colder than the climatological mean) from mid-December 2009 to mid-January 2010, leading to prolonged PSC formation and existence. Significant denitrification, the removal of HNO3 from the stratosphere by sedimentation of HNO3-containing polar stratospheric cloud particles, occurred in that winter. In our comparison, we focus on PSC formation and denitrification. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters (differences for HNO3 generally within ±20 %) and thus that EMAC nudged toward ECMWF ERA-Interim reanalyses is capable of giving a realistic representation of the evolution of PSCs and associated sequestration of gas-phase HNO3 in the polar winter stratosphere. However, simulated PSC volume densities are smaller than the ones derived from Envisat/MIPAS observations by a factor of 3–7. Further, PSCs in EMAC are not simulated as high up (in altitude) as they are observed. This underestimation of PSC volume density and vertical extension of the PSCs results in an underestimation of the vertical redistribution of HNO3 due to denitrification/re-nitrification. The differences found here between model simulations and observations stipulate further improvements in the EMAC set-up for simulating PSCs
    corecore