109 research outputs found

    Energy relaxation dynamics and universal scaling laws in organic light emitting diodes

    Full text link
    Electron-hole (e-h) capture in luminescent conjugated polymers (LCPs) is modeled by the dissipative dynamics of a multilevel electronic system coupled to a phonon bath. Electroinjected e-h pairs are simulated by a mixed quantum state, which relaxes via phonon-driven internal conversions to low-lying charge-transfer (CT) and excitonic (XT) states. The underlying two-band polymer model reflects PPV and spans monoexcited configuration interaction singlets (S) and triplets (T), coupled to Franck-Condon active C=C stretches and ring-torsions. Focusing entirely upon long PPV chains, we consider the recombination kinetics of an initially separated CT pair. Our model calculations indicated that S and T recombination proceeds according to a branched, two-step mechanism dictated by near e-h symmetry. The initial relaxation occurs rapidly with nearly half of the population going into excitons (SXTS_{XT} or TXTT_{XT}), while the remaining portion remains locked in metastable CT states. While formation rates of SCTS_{CT} and TCTT_{CT} are nearly equal, SXTS_{XT} is formed about twice as fast TXTT_{XT} in concurrence with experimental observations of these systems. Furthermore, breaking e-h symmetry suppresses the XT to CT branching ratio for triplets and opens a slow CT→\to XT conversion channel exclusively for singlets due to dipole-dipole interactions between geminate and non-geminate configurations. Finally, our calculations yield a remarkable linear relation between chain length and singlet/triplet branching ratio which can be explained in terms of the binding energies of the respective final excitonic states and the scaling of singlet-triplet energy gap with chain length.Comment: For IJQC-Sanibel Quantum Chemistry Symposium, 200

    Theory of the singlet exciton yield in light-emitting polymers

    Full text link
    This paper presents a possible explanation for the enhanced singlet exciton yield in light emitting polymers. We propose a theory of electron-hole recombination via inter-molecular inter-conversion from inter-molecular weakly bound polaron pairs (or charge-transfer excitons) to intra-molecular excitons. This theory is applicable to parallel polymer chains. A crucial aspect of the theory is that both the intra-molecular and inter-molecular excitons are effective-particles, which are described by both a relative-particle wavefunction and a center-of-mass wavefunction. This implies two electronic selection rules. (1) The parity of the relative-particle wavefunction implies that inter-conversion occurs from the even parity inter-molecular charge-transfer excitons to the strongly bound intra-molecular excitons. (2) The orthonormality of the center-of-mass wavefunctions ensures that inter-conversion occurs from the charge-transfer excitons to the lowest branch of the strongly bound exciton families, and not to higher lying members of these families. The inter-conversion is then predominately a multi-phonon process, determined by the Franck-Condon factors. These factors are exponentially smaller for the triplet manifold than the singlet manifold because of the large exchange energy.Comment: To appear in Physical Review B, vol 70, 15 Oct 200

    Multiphonon emission model of spin-dependent exciton formation in organic semiconductors

    Full text link
    The maximum efficiency in organic light-emitting diodes (OLEDs) depends on the ratio, r=kS/kTr=k_S/k_T, where kSk_S (kTk_T) is the singlet (triplet) exciton formation rate. Several recent experiments found that r increases with increasing oligomer length from a value r≈1r \approx 1 in monomers and short oligomers. Here, we model exciton formation as a multi-phonon emission process. Our model is based on two assertions: (i) More phonons are emitted in triplet formation than in singlet formation. (ii) The Huang-Rhys parameter for this phonon emission is smaller in long oligomers than in short ones. We justify these assertions based on recent experimental and theoretical data.Comment: 8 pages, 7 figure

    Self-trapping of excitons, violation of condon approximation, and efficient fluorescence in conjugated cycloparaphenylenes

    Get PDF
    Cycloparaphenylenes, the simplest structural unit of armchair carbon nanotubes, have unique optoelectronic properties counterintuitive in the class of conjugated organic materials. Our time-dependent density functional theory study and excited state dynamics simulations of cycloparaphenylene chromophores provide a simple and conceptually appealing physical picture explaining experimentally observed trends in optical properties in this family of molecules. Fully delocalized degenerate second and third excitonic states define linear absorption spectra. Self-trapping of the lowest excitonic state due to electron-phonon coupling leads to the formation of spatially localized excitation in large cycloparaphenylenes within 100 fs. This invalidates the commonly used Condon approximation and breaks optical selection rules, making these materials superior fluorophores. This process does not occur in the small molecules, which remain inefficient emitters. A complex interplay of symmetry, π-conjugation, conformational distortion and bending strain controls all photophysics of cycloparaphenylenes.Fil: Adamska, Lyudmyla. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Nayyar, Iffat. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Chen, Hang. Boston University; Estados UnidosFil: Swan, Anna K.. Boston University; Estados UnidosFil: Oldani, Andres Nicolas. Universidad Nacional de Quilmes; ArgentinaFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Golder, Matthew R.. University of Oregon; Estados UnidosFil: Jasti, Ramesh. University of Oregon; Estados UnidosFil: Doorn, Stephen K.. Los Alamos National Laboratory. Los Alamos; Estados UnidosFil: Tretiak, Sergei. Los Alamos National Laboratory. Los Alamos; Estados Unido
    • …
    corecore