Electron-hole (e-h) capture in luminescent conjugated polymers (LCPs) is
modeled by the dissipative dynamics of a multilevel electronic system coupled
to a phonon bath. Electroinjected e-h pairs are simulated by a mixed quantum
state, which relaxes via phonon-driven internal conversions to low-lying
charge-transfer (CT) and excitonic (XT) states. The underlying two-band polymer
model reflects PPV and spans monoexcited configuration interaction singlets (S)
and triplets (T), coupled to Franck-Condon active C=C stretches and
ring-torsions. Focusing entirely upon long PPV chains, we consider the
recombination kinetics of an initially separated CT pair. Our model
calculations indicated that S and T recombination proceeds according to a
branched, two-step mechanism dictated by near e-h symmetry. The initial
relaxation occurs rapidly with nearly half of the population going into
excitons (SXT or TXT), while the remaining portion remains locked in
metastable CT states. While formation rates of SCT and TCT are nearly
equal, SXT is formed about twice as fast TXT in concurrence with
experimental observations of these systems. Furthermore, breaking e-h symmetry
suppresses the XT to CT branching ratio for triplets and opens a slow CT→
XT conversion channel exclusively for singlets due to dipole-dipole
interactions between geminate and non-geminate configurations. Finally, our
calculations yield a remarkable linear relation between chain length and
singlet/triplet branching ratio which can be explained in terms of the binding
energies of the respective final excitonic states and the scaling of
singlet-triplet energy gap with chain length.Comment: For IJQC-Sanibel Quantum Chemistry Symposium, 200