808 research outputs found

    Importance of the V 3d-O 2p hybridization in the Mott-Hubbard material V2O3

    Full text link
    We studied the changes in the electronic structure of V2O3 using a cluster model. The calculations included fluctuations from the coherent band in the metallic phase, and non-local Mott-Hubbard fluctuations in the insulating phase. The incoherent structure is mostly related to the usual ligand screening channel (3d2L). The coherent peak in the metallic phase corresponds to coherent band fluctuations (3d2C). The non-local screened state in the insulating phase (3d2D) appears at higher energies, opening the band gap. The photon energy dependence of the spectra is mostly due to the relative V 3d and O 2p cross sections. The present model reproduces also the observed changes in the V 1s core-level spectra. The above results suggest that the Mott-Hubbard transition in V2O3 requires a multi-band model.Comment: 4 pages, 4 figure

    Layer dependent band dispersion and correlations using tunable Soft X-ray ARPES

    Full text link
    Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study in-plane band dispersions of Nickel as a function of probing depth. Photon energies between 190 and 780 eV were used to effectively probe up to 3-7 layers. The results show layer dependent band dispersion of the Delta_2 minority-spin band which crosses the Fermi level in 3 or more layers, in contrast to known top 1-2 layers dispersion obtained using ultra-violet rays. The layer dependence corresponds to an increased value of exchange splitting and suggests reduced correlation effects in the bulk compared to the surface.Comment: 7 pages, 3 figures Revised text and figur

    Spin-polarized surface state of MnSb(0001)

    Get PDF
    Knowledge of the spin-dependent electronic structure at surfaces and interfaces plays an increasingly important role when assessing possible use of novel magnetic materials for spintronic applications. It is shown that spin- and angle-resolved photoelectron spectroscopy together with ab initio electronic structure methods provides a full characterization of the surface electronic structure of ferromagnetic MnSb(0 0 0 1). Two different surface reconstructions have been compared in spin- and angle-resolved valence-band photoemission. For annealing at elevated temperatures, the ( 1 x 1)-structure transforms into 2 x 2 and a majority-spin peak appears at - 1.7 eV inside a majority-spin bulk band gap at the surface Brillouin zone centre. Its sensitivity to oxygen supports an interpretation as magnetic compound surface state. Local spin density calculations predict at the same energy (- 1.75 eV) a prominent d(z)2 surface state of majority spin for ( 1 x 1)- Mn terminated MnSb(0 0 0 1) but no such feature for ( 1 x 1)-Sb termination. The calculation shows that neither the bulk nor the surface is half-metallic, in agreement with the expectation for the hexagonal NiAs structure

    Temperature dependent Eu 3d-4f X-ray Absorption and Resonant Photoemission Study of the Valence Transition in EuNi2(Si0.2Ge0.8)2EuNi_2(Si_{0.2}Ge_{0.8})_2

    Full text link
    We study the mixed valence transition (TTv_{v} \sim80 K) in EuNi2_{2}(Si0.2_{0.2}Ge0.8_{0.8})2_{2} using Eu 3d4fd-4f X-ray absorption spectroscopy (XAS) and resonant photoemission spectroscopy (RESPES). The Eu2+^{2+} and Eu3+^{3+} main peaks show a giant resonance and the spectral features match very well with atomic multiplet calculations. The spectra show dramatic temperature (TT)-dependent changes over large energies (\sim10 eV) in RESPES and XAS. The observed non-integral mean valencies of \sim2.35 ±\pm 0.03 (TT = 120 K) and \sim2.70 ±\pm 0.03 (TT = 40 K) indicate homogeneous mixed valence above and below TTv_{v}. The redistribution between Eu2+^{2+}4f74f^7+[spd]0[spd]^0 and Eu3+^{3+}4f64f^6+[spd]1[spd]^1 states is attributed to a hybridization change coupled to a Kondo-like volume collapse.Comment: 4 pages, 3 figure

    Impact Ionization in ZnS

    Full text link
    The impact ionization rate and its orientation dependence in k space is calculated for ZnS. The numerical results indicate a strong correlation to the band structure. The use of a q-dependent screening function for the Coulomb interaction between conduction and valence electrons is found to be essential. A simple fit formula is presented for easy calculation of the energy dependent transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for publication in PRB as brief Report (LaTeX source replaces raw-postscript file

    Bulk screening in core level photoemission from Mott-Hubbard and Charge-Transfer systems

    Full text link
    We report bulk-sensitive hard X-ray (hνh\nu = 5.95 KeV) core level photoemission spectroscopy (PES) of single crystal V1.98_{1.98}Cr0.02_{0.02}O3_{3} and the high-TcT_c cuprate Bi2_2Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} (Bi2212). V1.98_{1.98}Cr0.02_{0.02}O3_{3} exhibits low binding energy "satellites" to the V 2p2p "main lines" in the metallic phase, which are suppressed in the antiferromagnetic insulator phase. In contrast, the Cu 2p2p spectra of Bi2212 do not show temperature dependent features, but a comparison with soft X-ray PES indicates a large increase in the 2p53d92p^5 3d^9 "satellites" or 3d93d^9 weight in the bulk. Cluster model calculations, including full multiplet structure and a screening channel derived from the coherent band at the Fermi energy, give very satisfactory agreement with experiments

    Learning from monitoring networks: Few-large vs. many-small plots and multi-scale analysis

    Get PDF
    In order to learn about broad scale ecological patterns, data from large-scale surveys must allow us to either estimate the correlations between the environment and an outcome and/or accurately predict ecological patterns. An important part of data collection is the sampling effort used to collect observations, which we decompose into two quantities: the number of observations or plots (n) and the per-observation/plot effort (E; e.g., area per plot). If we want to understand the relationships between predictors and a response variable, then lower model parameter uncertainty is desirable. If the goal is to predict a response variable, then lower prediction error is preferable. We aim to learn if and when aggregating data can help attain these goals. We find that a small sample size coupled with large observation effort coupled (few large) can yield better predictions when compared to a large number of observations with low observation effort (many small). We also show that the combination of the two values (n and E), rather than one alone, has an impact on parameter uncertainty. In an application to Forest Inventory and Analysis (FIA) data, we model the tree density of selected species at various amounts of aggregation using linear regression in order to compare the findings from simulated data to real data. The application supports the theoretical findings that increasing observational effort through aggregation can lead to improved predictions, conditional on the thoughtful aggregation of the observational plots. In particular, aggregations over extremely large and variable covariate space may lead to poor prediction and high parameter uncertainty. Analyses of large-range data can improve with aggregation, with implications for both model evaluation and sampling design: testing model prediction accuracy without an underlying knowledge of the datasets and the scale at which predictor variables operate can obscure meaningful results

    Incorporating latent variables using nonnegative matrix factorization improves risk stratification in Brugada syndrome

    Get PDF
    Background: A combination of clinical and electrocardiographic risk factors is used for risk stratification in Brugada syndrome. In this study, we tested the hypothesis that the incorporation of latent variables between variables using nonnegative matrix factorization can improve risk stratification compared with logistic regression. Methods and Results: This was a retrospective cohort study of patients presented with Brugada electrocardiographic patterns between 2000 and 2016 from Hong Kong, China. The primary outcome was spontaneous ventricular tachycardia/ventricular fibrillation. The external validation cohort included patients from 3 countries. A total of 149 patients with Brugada syndrome (84% males, median age of presentation 50 [38–61] years) were included. Compared with the nonarrhythmic group (n=117, 79%), the spontaneous ventricular tachycardia/ ventricular fibrillation group (n=32, 21%) were more likely to suffer from syncope (69% versus 37%, P=0.001) and atrial fibrillation (16% versus 4%, P=0.023) as well as displayed longer QTc intervals (424 [399–449] versus 408 [386–425]; P=0.020). No difference in QRS interval was observed (108 [98–114] versus 102 [95–110], P=0.104). Logistic regression found that syncope (odds ratio, 3.79; 95% CI, 1.64–8.74; P=0.002), atrial fibrillation (odds ratio, 4.15; 95% CI, 1.12–15.36; P=0.033), QRS duration (odds ratio, 1.03; 95% CI, 1.002–1.06; P=0.037) and QTc interval (odds ratio, 1.02; 95% CI, 1.01–1.03; P=0.009) were significant predictors of spontaneous ventricular tachycardia/ventricular fibrillation. Increasing the number of latent variables of these electrocardiographic indices incorporated from n=0 (logistic regression) to n=6 by nonnegative matrix factorization improved the area under the curve of the receiving operating characteristics curve from 0.71 to 0.80. The model improves area under the curve of external validation cohort (n=227) from 0.64 to 0.71. Conclusions: Nonnegative matrix factorization improves the predictive performance of arrhythmic outcomes by extracting latent features between different variables

    The effect of synthetic octacalcium phosphate in a collagen scaffold on the osteogenicity of mesenchymal stem cells

    Get PDF
    Although the efficacy of the in vivo osteogenic capabilities of synthetic octacalcium phosphate (OCP) crystal implantation can be explained through its stimulatory capacity for the differentiation of the host osteoblastic cell lineage, direct evidence that OCP supports bone regeneration by osteogenic cells in vivo has not been shown. Mesenchymal stem cells (MSCs) isolated from 4-week-old male Wistar rat long bones were pre-incubated in osteogenic or maintenance medium in the presence or absence of basic fibroblast growth factor (bFGF). OCP/Collagen (OCP/Col) or collagen disks were seeded with MSCs that had been pre-incubated in osteogenic medium containing bFGF, which exhibited the highest differentiation induction, and then incubated for an additional day. The disks were implanted in critical-sized calvaria defects of 12-week-old male Wistar rats and the specimens were analysed radiographically, histologically, histomorphometrically, and by micro-computed tomography (CT) imaging at 4 and 8 weeks after the implantation. The OCP/Col·MSCs group rapidly induced more bone regeneration, even within 4 weeks, compared to the OCP/Col group without MSCs. The bone mineral density of the OCP/Col·MSCs group was also greater than the OCP/Col group. The Col·MSCs group did not exhibit prominent osteogenicity. These results indicate that OCP crystals in a collagen matrix efficiently promote exogenously introduced osteogenic cells to initiate bone regeneration if the cells are pre-treated in a suitable differentiation condition
    corecore