62 research outputs found

    Dual-regulated lentiviral vector for gene therapy of X-linked chronic granulomatosis

    Get PDF
    Regulated transgene expression may improve the safety and efficacy of hematopoietic stem cell (HSC) gene therapy. Clinical trials for X-linked chronic granulomatous disease (X-CGD) employing gammaretroviral vectors were limited by insertional oncogenesis or lack of persistent engraftment. Our novel strategy, based on regulated lentiviral vectors (LV), targets gp91(phox) expression to the differentiated myeloid compartment while sparing HSC, to reduce the risk of genotoxicity and potential perturbation of reactive oxygen species levels. Targeting was obtained by a myeloid-specific promoter (MSP) and posttranscriptional, microRNA-mediated regulation. We optimized both components in human bone marrow (BM) HSC and their differentiated progeny in vitro and in a xenotransplantation model, and generated therapeutic gp91(phox) expressing LVs for CGD gene therapy. All vectors restored gp91(phox) expression and function in human X-CGD myeloid cell lines, primary monocytes, and differentiated myeloid cells. While unregulated LVs ectopically expressed gp91(phox) in CD34(+) cells, transcriptionally and posttranscriptionally regulated LVs substantially reduced this off-target expression. X-CGD mice transplanted with transduced HSC restored gp91(phox) expression, and MSP-driven vectors maintained regulation during BM development. Combining transcriptional (SP146.gp91-driven) and posttranscriptional (miR-126-restricted) targeting, we achieved high levels of myeloid-specific transgene expression, entirely sparing the CD34(+) HSC compartment. This dual-targeted LV construct represents a promising candidate for further clinical development

    Cyclosporine H Overcomes Innate Immune Restrictions to Improve Lentiviral Transduction and Gene Editing In Human Hematopoietic Stem Cells

    Get PDF
    Innate immune factors may restrict hematopoietic stem cell (HSC) genetic engineering and contribute to broad individual variability in gene therapy outcomes. Here, we show that HSCs harbor an early, constitutively active innate immune block to lentiviral transduction that can be efficiently overcome by cyclosporine H (CsH). CsH potently enhances gene transfer and editing in human long-term repopulating HSCs by inhibiting interferon-induced transmembrane protein 3 (IFITM3), which potently restricts VSV glycoprotein-mediated vector entry. Importantly, individual variability in endogenous IFITM3 levels correlated with permissiveness of HSCs to lentiviral transduction, suggesting that CsH treatment will be useful for improving ex vivo gene therapy and standardizing HSC transduction across patients. Overall, our work unravels the involvement of innate pathogen recognition molecules in immune blocks to gene correction in primary human HSCs and highlights how these roadblocks can be overcome to develop innovative cell and gene therapies

    On the general theory of the origins of retroviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations <b>(Vm) </b>and host adaptability <b>(Ha)</b>); along with interplay between <it>inhibitors </it>and <it>promoters </it>of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact <it>modus operadi </it>of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses.</p> <p>Methods and results</p> <p>On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species <it>Xy </it>to <it>Homo sapiens </it>(<it>Hs</it>), initially excluding all social factors, the following was derived. At the port of exit from <it>Xy </it>(where the species barrier, SB, is defined by the <it>Index of Origin</it>, IO), sfv shedding is (1) enhanced by two transmitting tensors <b>(Tt)</b>, (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e<sup>2</sup>D); and (2) opposed by the five accepting scalars <b>(At)</b>: (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit <b>(</b>NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (↓<sub>pH </sub>CMat). Assuming <b>As </b>and <b>Tt </b>to be independent variables, <b>IO = Tt/As</b>. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the <it>Index of Entry</it>, <b>IE = As/Tt</b>). Overall, If sfv encounters no unforeseen effects on transit between X<it>y </it>and <it>Hs</it>, then the square root of the combined index of sfv transmissibility (√<b>|RTI|) </b>is proportional to the product IO* IE (or ~Vm* Ha* ∑Tt*∑As*<b>Ω</b>), where <b>Ω </b>is the retrovirological constant and ∑ is a function of the ratio Tt/As or As/Tt for sfv transmission from <it>Xy </it>to <it>Hs</it>.</p> <p>Conclusions</p> <p>I present a mathematical formalism encapsulating the general theory of the origins of retroviruses. It summarizes the choreography for the intertwined interplay of factors influencing the probability of retroviral cross-species transmission: <b>Vm, Ha, Tt, As, </b>and <b>Ω</b>.</p

    OAS1 Polymorphisms Are Associated with Susceptibility to West Nile Encephalitis in Horses

    Get PDF
    West Nile virus, first identified within the United States in 1999, has since spread across the continental states and infected birds, humans and domestic animals, resulting in numerous deaths. Previous studies in mice identified the Oas1b gene, a member of the OAS/RNASEL innate immune system, as a determining factor for resistance to West Nile virus (WNV) infection. A recent case-control association study described mutations of human OAS1 associated with clinical susceptibility to WNV infection. Similar studies in horses, a particularly susceptible species, have been lacking, in part, because of the difficulty in collecting populations sufficiently homogenous in their infection and disease states. The equine OAS gene cluster most closely resembles the human cluster, with single copies of OAS1, OAS3 and OAS2 in the same orientation. With naturally occurring susceptible and resistant sub-populations to lethal West Nile encephalitis, we undertook a case-control association study to investigate whether, similar to humans (OAS1) and mice (Oas1b), equine OAS1 plays a role in resistance to severe WNV infection. We identified naturally occurring single nucleotide mutations in equine (Equus caballus) OAS1 and RNASEL genes and, using Fisher's Exact test, we provide evidence that mutations in equine OAS1 contribute to host susceptibility. Virtually all of the associated OAS1 polymorphisms were located within the interferon-inducible promoter, suggesting that differences in OAS1 gene expression may determine the host's ability to resist clinical manifestations associated with WNV infection

    Genetic Variation in OAS1 Is a Risk Factor for Initial Infection with West Nile Virus in Man

    Get PDF
    West Nile virus (WNV) is a re-emerging pathogen that can cause fatal encephalitis. In mice, susceptibility to WNV has been reported to result from a single point mutation in oas1b, which encodes 2â€Č–5â€Č oligoadenylate synthetase 1b, a member of the type I interferon-regulated OAS gene family involved in viral RNA degradation. In man, the human ortholog of oas1b appears to be OAS1. The ‘A’ allele at SNP rs10774671 of OAS1 has previously been shown to alter splicing of OAS1 and to be associated with reduced OAS activity in PBMCs. Here we show that the frequency of this hypofunctional allele is increased in both symptomatic and asymptomatic WNV seroconverters (Caucasians from five US centers; total n = 501; OR = 1.6 [95% CI 1.2–2.0], P = 0.0002 in a recessive genetic model). We then directly tested the effect of this SNP on viral replication in a novel ex vivo model of WNV infection in primary human lymphoid tissue. Virus accumulation varied markedly among donors, and was highest for individuals homozygous for the ‘A’ allele (P<0.0001). Together, these data identify OAS1 SNP rs10774671 as a host genetic risk factor for initial infection with WNV in humans

    TRIM5α and TRIM22 are differentially regulated according to HIV-1 infection phase and compartment.

    Get PDF
    CAPRISA, 2014.The antiviral role of TRIM E3 ligases in vivo is not fully understood. To test the hypothesis that TRIM5α and TRIM22 have differential transcriptional regulation and distinct anti-HIV roles according to infection phase and compartment, we measured TRIM5α, TRIM22, and type I interferon (IFN-I)-inducible myxovirus resistance protein A (MxA) levels in peripheral blood mononuclear cells (PBMCs) during primary and chronic HIV-1 infection, with chronic infection samples being matched PBMCs and central nervous system (CNS)-derived cells. Associations with biomarkers of disease progression were explored. The impact of IFN-I, select proinflammatory cytokines, and HIV on TRIM E3 ligase-specific expression was investigated. PBMCs from individuals with primary and chronic HIV-1 infection had significantly higher levels of MxA and TRIM22 than did PBMCs from HIV-1-negative individuals (P < 0.05 for all comparisons). PBMCs from chronic infection had lower levels of TRIM5α than did PBMCs from primary infection or HIV-1-uninfected PBMCs (P = 0.0001 for both). In matched CNS-derived samples and PBMCs, higher levels of MxA (P = 0.001) and TRIM5α (P = 0.0001) in the CNS were noted. There was a negative correlation between TRIM22 levels in PBMCs and plasma viral load (r = -0.40; P = 0.04). In vitro, IFN-I and, rarely, proinflammatory cytokines induced TRIM5α and TRIM22 in a cell type-dependent manner, and the knockdown of either protein in CD4(+) lymphocytes resulted in increased HIV-1 infection. These data suggest that there are infection-phase-specific and anatomically compartmentalized differences in TRIM5α and TRIM22 regulation involving primarily IFN-I and specific cell types and indicate subtle differences in the antiviral roles and transcriptional regulation of TRIM E3 ligases in vivo
    • 

    corecore