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SUMMARY

Innate immune factors may restrict hematopoietic
stem cell (HSC) genetic engineering and contribute
to broad individual variability in gene therapy out-
comes. Here, we show that HSCs harbor an early,
constitutively active innate immune block to lentiviral
transduction that can be efficiently overcome by
cyclosporine H (CsH). CsH potently enhances gene
transfer and editing in human long-term repopulating
HSCs by inhibiting interferon-induced transmem-
brane protein 3 (IFITM3), which potently restricts
VSV glycoprotein-mediated vector entry. Impor-
tantly, individual variability in endogenous IFITM3
levels correlatedwith permissiveness of HSCs to len-
tiviral transduction, suggesting that CsH treatment
will be useful for improving ex vivo gene therapy
and standardizing HSC transduction across patients.
Overall, our work unravels the involvement of innate
pathogen recognition molecules in immune blocks
to gene correction in primary human HSCs and high-
lights how these roadblocks can be overcome to
develop innovative cell and gene therapies.

INTRODUCTION

The limited efficiency of genemanipulation in human hematopoi-

etic stem and progenitor cells (HSPC) remains a major hurdle for

effective clinical application of genetic therapies for a wide range

of disorders. Indeed, high vector doses and prolonged ex vivo

culture are still required for effective gene transfer, even with

the most established lentiviral vector (LV)-based delivery plat-

forms. Various transduction enhancers have been identified

(Heffner et al., 2018; Petrillo et al., 2015;Wang et al., 2014; Zonari

et al., 2017), which impact the LV life cycle at different stages

from vector entry to integration. This highlights the existence of

multiple barriers to gene transfer in HSPC.
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We previously observed that cyclosporine A (CsA) enhances

transduction in HSPC, contrasting with its well-known inhibitory

activity against lentiviruses (Petrillo et al., 2015; Rasaiyaah et al.,

2013). In differentiated cells, CsA inhibits lentiviral infection

through interfering with the interaction of the HIV-1 capsid with

the host cofactor cyclophilin A (CypA), which is important for

optimal DNA synthesis, capsid uncoating and nuclear import of

the viral pre-integration complex (PIC) (Hilditch and Towers,

2014). It has been unclear how CsA enhances LV transduction

in HSPC.

There is increasing evidence that HSPC are responsive to

type-I interferon (IFN)-mediated innate immune signaling (Essers

et al., 2009; Haas et al., 2015; Hirche et al., 2017; Nagai et al.,

2006). Although we have demonstrated that LV transduction

does not trigger type I IFN signaling in HSPC (Piras et al.,

2017), it has recently been shown that stem cells constitutively

express genes that are typically IFN-inducible. This protects

HSPC from viral infections (Wu et al., 2018). Although many of

these antiviral host factors are known to potently restrict retro-

viral infections in mammalian cells (Towers and Noursadeghi,

2014), their potential impact on LV gene transfer in HSPC re-

mains poorly characterized (Kajaste-Rudnitski and Nal-

dini, 2015).

Here, we identify a potent steady-state restriction of LV-medi-

ated gene transfer in human HSPC. We demonstrate that this

barrier can be efficiently overcome by the non-immunosuppres-

sive cyclosporine H (CsH), leading to significantly enhanced

transduction and gene editing efficiencies in human HSPC.
RESULTS

A CypA-Independent Cyclosporine Reveals an Early
Block to LV Transduction in HSPCs
The reduction of LV infection in differentiated cells by CsA is due

to inhibition of CypA recruitment to the incoming HIV-1 capsid

(CA) (Sokolskaja and Luban, 2006; Towers, 2007; Towers et al.,

2003). In agreementwith a cofactor role for CypAduring LV trans-

duction, depletion of CypA led to lower transduction of human

HSPC (Figures S1A–S1D). This implies that the capacity of CsA
cember 6, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 1
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to increase LV transduction in HSPC is likely suboptimal, given

that it will also interferewith this positive CypA-vector interaction.

Based on these results, and our previous observation that the

immunosuppressive arm of CsA is not involved in enhancing LV

transduction in HSPC (Petrillo et al., 2015), we tested a naturally

occurring cyclosporine, cyclosporine H (CsH), which does not

bind CypA and is not immunosuppressive (Figure S1E) (Jeffery,

1991). Remarkably, CsH was more potent than CsA at the

same 8mM dose and increased LV transduction up to 10-fold in

human cord blood (CB)-derived HSPC (Figure 1A). Higher doses

of CsH further increased transduction (Figure S1F) but were toxic

(Figures 1BandS1G). CsH improved transduction as early as 2 hr

post-exposure but optimal efficacy was achieved after overnight

(16 hr) exposure (Figures S1H and S1I). The enhancement was

lower if CsH was removed prior to transduction but could be

restored by blocking de novo protein synthesis during the 6 hr

of vector exposure (Figure S1J). Remarkably, CsH rendered

HSPC as permissive as the highly transducible 293T cell line (Fig-

ure 1C). Importantly, CsH was effective in the clinically relevant

human mobilized peripheral blood (mPB)-derived CD34+ cells,

in murine HSPC (Figures 1D and 1E) and in all CD34+ subpopula-

tions, including in the more primitive CD34+CD133+CD90+ frac-

tion (Figure 1F), without altering the subpopulation composition

nor the cell-cycle status (Figures 1G and 1H). Unlike CsA, no pro-

liferation delaywas observedwith CsH, in linewith CsH not being

immunosuppressive (Figure 1I). CsH was more potent and addi-

tive with transduction enhancers Rapamycin (Rapa) (Petrillo

et al., 2015;Wang et al., 2014) andPGE2 (Heffner et al., 2018; Zo-

nari et al., 2017) but not with CsA (Figures 1J–1L). CsH also

increased LV transduction in unstimulated HSPC (Figure 1M),

but did not alter transduction in primary human monocyte-

derived macrophages (MDM) (Figure S1K). This was irrespective

of SAMHD1-mediated LV restriction, which can be overcome

by incorporating the simian immunodeficiency virus macaque

(SIVmac) accessory protein Vpx into the LV particle (Bobadilla

et al., 2013). Conversely, we saw a statistically significant in-

crease in the percentage of transduced (GFP+) activated T cells

with CsH (Figure S1L). These data are in contrast with the inhibi-

tory effect of CsA that we and others have observed in this cell

type (Donahue et al., 2017; Lahaye et al., 2016; Petrillo et al.,

2015). This further underscores how the CypA-dependent CsA

inhibition of LV infection likely masks its enhancement of trans-

duction. Indeed, CsA increased transduction of the CypA-inde-

pendent P90A LV capsid mutant, which does not recruit CypA,

to similar extent as CsH in HSPC (Figure S1M). CsH also

increased transduction of the CPSF6-independent N74D capsid

mutant (Lee et al., 2010) (FigureS1N), ruling outCPSF6 in theCsH

enhancement mechanism. Of note, transduction by an SIVmac-

derived vector, which does not interact with human CypA (Luban

et al., 1993), was also increased by both cyclosporines in human

CD34+ cells (Figure S1O). To further dissect the step of the viral

life cycle affected by CsH, we measured viral DNA replication in-

termediates early after transduction.Consistentwith the increase

in infection, CsH led to an increase in late-reverse transcription

(RT) products and 2LTR circles, the latter a marker of LV nuclear

import (Follenzi et al., 2000) (Figures S1P and S1Q). Of note, no

changes in the 2LTR/late-RT ratio were observed upon CsH

treatment (FigureS1R), indicating thatCsH relievesanearly block

to transduction prior to DNA synthesis without affecting nuclear
2 Cell Stem Cell 23, 1–13, December 6, 2018
import. Concordantly, CsH also enhanced transduction of an in-

tegrase-defective LV (IDLV), as measured by an increase in vec-

tor DNA per cell (Figure 1N). CsA was also able to increase IDLV

transduction when packaged with the CypA-independent A88T

mutant capsid (Busnadiego et al., 2014) (Figure S1S). These re-

sults indicate that both cyclosporines relieve an early block to

LV transduction in human HSPC and identify CsH as the most

effective HSPC transduction enhancer described thus far.

CsH Increases LV Transduction and Gene Editing
Efficiency in SCID-Repopulating HSPCs
To assess CsH-enhanced transduction in a more clinically rele-

vant setting, we transplanted human mPB-CD34+ cells trans-

duced with clinical grade LV expressing the alpha-L-iduronidase

(IDUA) transgene (IDUA-LV), designed to treat patients affected

by type I mucopolysaccharidoses (MPS-I) (Visigalli et al., 2010,

2016), into the xenograft NSG mouse model of human hemato-

poiesis and followed engraftment and transduction efficiency

in vivo (Figure 2A). As a control, cells were transduced twice in

the absence of CsH, as per the current standard protocol. No dif-

ferences in colony-forming capacity were observed between

control and CsH-treated cells. The two-hit transduction protocol

showed a slightly increased colony output, likely reflecting the

higher percentage of progenitor cells due to the longer ex vivo

culture period (Figure S2A). Remarkably, one single LV dose in

the presence of CsH was enough to yield significantly higher

gene marking in vitro (Figures S2B and S2C), as well as in

long-term repopulating HSCand derived progeny in vivo (Figures

2B, S2D, and S2E). This surpassed the reference protocol by

2-fold and achieved an almost 10-fold increase in long-term

genemarking in vivo compared to the single transduction control

group. CsH exposure did not alter the short-term engraftment

capacity of HSPC compared to the two-hit protocol but re-

mained slightly below levels achieved with the single-hit control

(Figures 2C and S2F). This could be related to the enhanced level

of transduction as observed previously (Piras et al., 2017).

Indeed, exposure of mPB-CD34+ cells to CsH alone did not

impact early HSPC engraftment (Figures 2D and S2G). Impor-

tantly, we observed higher long-term engraftment, associated

with shorter ex vivo culture, in the BM and spleens for CsH-

treated transduced cells (Figures 2E and S2H–S2L). CsH also

significantly enhanced LV transduction in bona fide long-term

HSC repopulating secondary recipients without affecting their

engraftment capacity (Figures 2F–2H and S2M–S2P).

As CsH enhanced IDLV transduction in human HSPC, we

tested its effect on the efficiency of IDLV-mediated HSPC gene

editing (Figure 2I). Remarkably, delivery of the donor IDLV in the

presence of CsH increased gene editing efficiency in human

HSPC (Figure 2J) without altering the relative composition of

the hematopoietic subpopulations (Figure S2Q). This increase

wasevenmorepronounced in theprimitiveCD34+CD133+CD90+

fraction (Figure 2J) and significantly higher targeting efficiency

was maintained long-term in vivo, reaching an almost 4-fold

increase in gene editing over controls, without affecting engraft-

ment (Figures 2K–2M, S2R, and S2S). Further molecular analysis

confirmed that CsH specifically increased targeted integration by

homology-directed repair (HDR)with the overall fraction of edited

alleles remaining unchanged (Figure S2T). CsH did not affect

AAV6-based gene editing in HSPC (Figure S2U), consistent
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Figure 1. CsH Is a Potent and Non-toxic Enhancer of Lentiviral Vector Transduction in Hematopoietic Stem Cells

(A) Human cord-blood (CB) cells were transduced with a VSV-g lentiviral (LV) at a multiplicity of infection (MOI) of 1 transducing unit (TU)/293T cell ± 8 mMCsA or

CsH. Percentages of transduced cells and vector copy numbers/human genome (VCN/genome) were assessed at 5 or 14 days post-transduction, respectively

(mean ± SEM; n = 20; one-way ANOVA with Bonferroni’s multiple comparison, *p % 0.05, **p % 0.01, ****p % 0.0001).

(B) Impact of CsA and CsH on apoptosis was assessed in hCB-CD34+ cells 48 hr post-transduction (mean ± SEM; n = 6; Dunn’s adjusted Kruskal-Wallis test; ns,

not significant).

(C) VSV-g pseudotyped LV was titered in parallel in 293T cells or human CB-CD34+ cells ± 8 mM CsH (mean ± SEM; n = 4; one-way ANOVA with Bonferroni’s

multiple comparison; ns, not significant, *p % 0.05).

(D and E) Transduction efficiencies (MOI = 1) in human mobilized peripheral blood (mPB)-CD34+ cells (mean ± SEM, n = 4, Mann-Whitney test, *p% 0.05) (D) or

murine hematopoietic stem and progenitor cells (mHSPC) (mean ± SEM, n = 8, Wilcoxon signed rank test, *p = 0.0078) (E).

(F) Transduction efficiencies (MOI = 1) in the different subpopulations of human mPB-CD34+ cells (mean ± SEM, n = 4, Mann-Whitney test versus each DMSO,

*p % 0.05).

(G and H) The composition (G) and cell-cycle status (H) of human mPB- or CB-CD34+ cells, respectively, were evaluated 48 hr post-transduction.

(I) Impact of CsA andCsH on cell proliferation was assessed in hCB-CD34+ cells 48 hr post-transduction (mean ± SEM; n = 4; Dunn’s adjusted Kruskal-Wallis test,

*p % 0.05).

(J–L) hCB- (J and K) and mPB- (L) derived HSPC were transduced in the presence of different drug combinations with LV at an MOI of 1 or 10 (mean ± SEM; n = 7

for I and J, and n = 4 for K; one-way ANOVA with Bonferroni’s multiple comparison, *p % 0.05, **p % 0.01, ***p % 0.001, ****p % 0.0001).

(M) Transduction efficiencies ± 8 mM CsH (MOI = 10) in unstimulated hCB-CD34+ cells (unst. hHSPC) (mean ± SEM, n = 4, Mann-Whitney, *p % 0.05).

(N) hCB-CD34+ cells were transduced with an integrase defective LV (IDLV) vector at MOI = 50 ± 8 mM CsH.

See also Figure S1 and Table S1.
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Figure 2. CsH Increases Gene Transfer and Editing in Long-Term SCID-Repopulating Human HSPCs

(A) Experimental scheme of the different transduction protocols using a clinical-grade LV and human mPB-derived CD34+ cells.

(B) VCN/genome were measured in the bone marrow (BM) at 18 weeks (mean ± SEM; n = 8; one-way ANOVA with Bonferroni’s multiple comparison, **p% 0.01,

****p % 0.0001).

(C and D) Engraftment levels in the peripheral blood of mice from different treatment groups transduced (C) or not (D) with IDUA-LV, respectively (mean ± SEM;

n R 11; Dunn’s adjusted Kruskal-Wallis; ns, not significant, **p % 0.01).

(E) Engraftment levels in the BM at 18 weeks post-transplant (mean ± SEM; n R 11; Dunn’s adjusted Kruskal-Wallis; ns, not significant, *p % 0.05).

(F) Experimental design of the secondary transplantation experiment using a purified PGK-GFP LV and human CB-CD34+ cells.

(G) Engraftment levels in the PB, BM, and SPL of secondary mice 13 weeks after transplantation.

(H) Transduction efficiencies (left: GFP+ cells; right: VCN/human genome) in BM and SPL of mice 13 weeks post-injection (mean ± SEM; n = 7, 8 mice per group,

Mann-Whitney test versus DMSO control, **p % 0.01, ***p % 0.001).

(I) Scheme of the gene editing protocol for human CB-derived CD34+ cells.

(legend continued on next page)
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Figure 3. CsH Counteracts an IFN-Inducible

Block to VSV-G-Mediated Vector Entry

(A) THP-1 cells were pre-stimulated or not with

1,000 IU/mL of human IFNa for 24 hr followed

by transduction with a VSV-g pseudotyped LV

(MOI = 1) +/� 8 mM CsH (mean ± SEM; n = 10;

Mann-Whitney test, ***p % 0.001).

(B) THP-1 cells ± 1 ng/mL of human IFNb were

transduced with VSV-g or amphotropic Molony

murine leukemia virus (MLV) pseudotyped LVs

(mean ± SEM, n = 3, Mann-Whitney test, *p = 0.05).

(C) THP-1 cells were pre-stimulated with human

IFNa and transduced with Ampho-MLV pseudo-

typed RV ± CsH (mean ± SEM, n = 4).

(D) THP-1 ± IFNawere transduced with a BaEV-TR

LV (MOI = 0.5–1) +/� CsH (mean ± SEM, n = 4).

(E) Human CB-derived CD34+ cells ± human IFNa

were transduced with a VSV-g pseudotyped LV

(MOI = 1) +/� 8 mMCsH (mean ± SEM; n = 6;Mann-

Whitney test, *p % 0.05, **p % 0.01).

(F) Human CB-derived CD34+ cells ± IFNa were

transduced with BaEV-TR LV (MOI = 0.5-1) +/�
CsH (mean ± SEM, n R 4).

See also Figure S3.
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with it not improving AAV6-mediated donor delivery (Figure S2V).

Together, these observations clearly illustrate the value ofCsHas

an enhancer of LV gene transfer and editing and strongly support

its use in therapeutic HSPC gene engineering.

CyclosporinesCounteract an IFN-Inducible Block to VSV
Glycoprotein-Dependent Lentiviral Vector Entry
TounderstandhowCsHenhancesgene transfer/editing inHSPC,

we considered how CsA improves VSV glycoprotein (VSV-G)

pseudotyped LV transduction of IFNa-stimulated monocytic

THP-1 cells (Bulli et al., 2016). We found that CsH also has this

effect (Figures 3A and S3A). Neither calcineurin-inhibitor FK506

nordepletionofcalcineurin, a known target ofCsA, rescued trans-

duction in thisway (FiguresS3BandS3C). Thebest characterized

CsH target, formyl peptide receptor 1 (FPR1) (de Paulis et al.,

1996; Prevete et al., 2015), is also not involved as IFN continued

to suppress LV transduction in FPR1-depleted THP-1 cells

(Figure S3D).

Similar to the CsH-sensitive transduction block in HSPC (Fig-

ures S1P–S1R), the type I IFN-mediated block in THP-1 is

evident by viral DNA synthesis (Figure S3E). Inhibition by type I
(J) Percentage of edited cells at AAVS1 locus measured within the indicated subpopulations 3 days after

*p % 0.05, **p % 0.01).

(K) Human CD45+ cell engraftment in PB at indicated times after transplantation of IL2RG edited CB-CD34+

(L) Percentage of gene editing by homology-directed repair (HDR) measured within human cells in mice from

(M) Percentage of human gene edited cells and editing efficiency measured in the BM of mice 19 weeks po

See also Figure S2 and Table S1.

Ce
IFN requires de novo protein synthesis

as cyclohexamide (CHX) rescued trans-

duction in IFNb-treated cells (Figure S3F).

HIV-1 capsidmutants known to be altered

for interactions with host cofactors CypA

and CPSF6/Nup153 (Lee et al., 2010; Ma-

treyek et al., 2013; Schaller et al., 2011)
remained sensitive to IFN (Figure S3G). Similar IFN-induced inhi-

bition and CsA-mediated rescue were observed with diverse

VSV-G pseudotyped retroviral vectors (Figure S3H). However,

vectors pseudotyped with the MLV-derived amphotropic enve-

lope glycoprotein remained insensitive to both type I IFN-medi-

ated inhibition and CsH (Figures 3B and 3C), indicating that

restriction and CsH sensitivity is influenced by the viral envelope.

In agreement with an envelope-dependent mechanism, LV

pseudotyped with the modified Baboon endogenous retroviral

envelope glycoprotein (BaEV-TR) (Girard-Gagnepain et al.,

2014) remained insensitive to both type I IFN and CsH in

THP-1 cells (Figure 3D). Importantly, in IFNa-treated HSPC,

CsH also rescued VSV-G pseudotyped LV transduction (Figures

3E and S3I) but not BaEV-TR LV, which remained less sensitive

to IFNa (Figure 3F). Together, these results are consistent with

cyclosporine-mediated rescue of a type I IFN-inducible block

to VSV-G-mediated LV entry in HSPC/THP-1.

CsH Counteracts IFITM3 Antiviral Activity in HSPCs
Members of the family of interferon induced transmembrane

proteins (IFITMs), in particular IFITM3, have broad antiviral
editing (mean ± SEM; n = 7, Mann-Whitney test,

cells (n = 5).

(K).

st-transplantation.
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Figure 4. CsH Counteracts IFITM3 Antiviral Activity

(A) THP-1 cells were transduced with an LV co-expressing GFP and IFITM proteins or Luciferase (Luc) as a control (OE-LV) and then re-challenged with a second

reporter LV. Transduction efficiencies are as fold versus mock (mean ± SEM, n R 6, Wilcoxon signed rank test versus mock = 1, **p = 0.0078).

(B) THP-1 cells overexpressing Luc or IFITM3 were transduced with a reporter LV ± 8 mM CsH (mean ± SEM, n R 20, Mann-Whitney test, ****p % 0.0001).

(C) THP-1 cells depleted for IFITM3 (sh-IFITM3) or expressing a non-silencing small hairpin RNA (shRNA) control (sh-ns) were re-transduced ± IFNa pre-treatment

and ± CsH (mean ± SEM, n = 10, Mann-Whitney test versus each control without hIFNa; ns, not significant, **p % 0.01, ***p % 0.001).

(legend continued on next page)
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activity against several viruses including VSV and retroviruses

such as HIV-1, but not MLV (Brass et al., 2009; Perreira et al.,

2013). IFITM3 acts at the level of viral entry into target cells

(Amini-Bavil-Olyaee et al., 2013; Li et al., 2013). To test whether

IFITMs are involved in the effect of CsH, we first overexpressed

the antiviral IFITM 1, 2, or 3 in THP-1 cells, followed by transduc-

tion with a reporter LV to evaluate IFITM impact on transduction

efficiency (Figure S4A). Only overexpression of IFITM3 resulted

in a significant decrease in LV transduction (Figures 4A and

S4B), and importantly, inhibited transduction was fully rescued

by CsH (Figure 4B). Furthermore, depletion or deletion of IFITM3

led to a full rescue of IFNa-induced LV restriction in THP-1

cells and abrogated CsH-mediated enhancement (Figures 4C,

S4C, and S5A–S5F). We specifically overexpressed IFITM3 in

THP-1 cells deleted for the endogenous IFITM2/3 and further

confirmed its role in LV restriction and cyclosporine enhance-

ment (Figure 4D). Similar to CsH-mediated effects, IFITM3-

dependent restriction was independent of interactions of the

LV capsid with host factors including CypA and CPSF6/

Nup153 (Figure S4D). IFITM3 also impaired IDLV transduction

(Figure S4E). As the CsH-mediated increase in LV transduction

is specific to VSV-G-mediated entry, which occurs by particle

endocytosis (Sun et al., 2005), we tested the capacity of IFITM3

to block BaEV-TR or Ampho-pseudotyped vectors that both

fuse at the plasma membrane (Girard-Gagnepain et al., 2014;

Ragheb et al., 1995). Consistent with their endocytosis-inde-

pendent mechanism of entry, neither pseudotype was inhibited

in THP-1 cells expressing IFITM3 (Figures 4E and 4F). On the

other hand, AAV6 remained insensitive to the action of type I

IFN and IFITM3 (Figure S4F), in agreement with its insensitivity

to CsH in HSPC (Figure S2V). Phosphorylation of the tyrosine

residue in position 20 (Y20) of IFITM3 has been shown to be

required for its activity against VSV-G pseudotyped RV (Jia

et al., 2012). Indeed, overexpressed IFITM3 Y20 mutants failed

to restrict VSV-G pseudotyped LV transduction in THP-1 cells

(Figures 4G, 4H, S4G, and S4H) and remained mostly at the

plasma membrane (Figure 4I), potentially explaining the lack of

restriction.

Importantly, overexpression of IFITM3 in HSPC resulted in a

significant decrease in LV transduction (Figure 5A). Conversely,

depletion of IFITM3 resulted in an enhancement of transduction

(Figure 5B). Moreover, CsH-mediated enhancement of trans-

duction was stronger in IFITM3-overexpressing HSPC and was

almost completely lost with IFITM3 depletion (Figure 5C). These

data were confirmed in vivo as Lin�HSPC isolated from the bone

marrow of Ifitm3�/� mice (Lange et al., 2008) were more permis-

sive to LV transduction and were largely insensitive to CsH-

mediated transduction enhancement as compared to Lin�

HSPC isolated from wild-type counterparts (Figure 5D).
(D) THP-1 deleted for IFITM3 were transduced with control Luc or IFITM3 expres

Mann-Whitney test, **p % 0.01).

(E) THP-1 cells expressing exogenous Luc or IFITM3 were transduced with a Ba

(F) THP-1 cells deleted for IFITM3 (KO-IFITM3) or control (KO-empty) were tran

protein levels were evaluated at the time of transduction.

(G and H) THP-1 overexpressing the WT or mutated forms of IFITM3 (mean ± SE

deleted for endogenous IFITM3 overexpressing the Luc control or the Y20F form o

(I) Co-localization (purple areas evidence by white arrows) of IFITM3 protein (in re

was evaluated by immunofluorescence in THP-1 cells deleted for the endogenou

See also Figure S4.
Intriguingly, individual human HSPC donors expressed

different levels of IFITM3 protein, which negatively correlated

with LV transduction efficiency (Figure 5E). As expected, CsH

enhanced transduction most effectively in samples with higher

IFITM3 expression (Figure 5F). Finally, we investigated the

impact of CsH on IFITM3 expression in bulk or sorted HSPC or

THP-1 stimulated with type I IFN. Significantly lower IFITM3 pro-

tein, but not mRNA, was detected after CsH treatment in both

cell types (Figures 6A, 6B, and S6A–S6D). Interestingly, the inac-

tive IFITM3 Y20F mutant was insensitive to CsH-induced loss in

THP-1 cells (Figure 6C). Of note, removal of CsH prior to trans-

duction resulted in partial restoration of IFITM3 protein levels

within the 6 hr transduction window. This was prevented by

blocking de novo protein synthesis during vector exposure in

HSPC (Figure S6E). These results are in line with CsH being

most effective when added with the vector (Figure S1J). The

transient effect of CsH on IFITM3 protein levels was confirmed

in THP-1 cells overexpressing IFITM3, where IFITM3 protein

levels were restored within 6 hr of CsH removal (Figure S6F).

Overall, these results illustrate how CsH potently enhances

HSPC gene manipulation efficiencies by overcoming an

IFITM3-mediated block to VSV-G-pseudotyped LV infection.

DISCUSSION

Because of concerns of toxicity related to the immunosuppres-

sive function of CsA, a number of non-immunosuppressive

cyclosporine derivatives have been developed and tested for

several applications (Peel and Scribner, 2013). Nevertheless,

most of these still inhibit the host factor CypA. Here, we have

shown that CypA is an important cofactor for efficient lentiviral

transduction of HSPC. Therefore, we sought a non-immunosup-

pressive cyclosporine that did not inhibit CypA, identifying CsH

as, to our knowledge, the most potent enhancer of HSPC gene

transfer (Heffner et al., 2018; Lewis et al., 2018; Wang et al.,

2014; Zonari et al., 2017; Petrillo et al., 2015). Our side-by-side

comparisons illustrate CsH treatment outperforms even the

standard double-hit protocol. Our findings are of particular rele-

vance in gene therapy settings in which high levels of gene

marking are required but difficult to achieve, such as for hemo-

globinopathies, where the large and complex human b-globin

gene expression cassette limits clinical-scale LV production

(Baldwin et al., 2015). CsH utility may extend to other stem cells

populations (Geis et al., 2017; Noser et al., 2006). Moreover, CsH

helps the IDLV-based editing platforms compete with other non-

integrating methods based on AAV or oligonucleotide-mediated

donor DNA delivery (De Ravin et al., 2017; Dever et al., 2016;

Schiroli et al., 2017; Wang et al., 2015), in particular for patients

harboring pre-existing adaptive immunity against some AAV
sing LV and re-challenged with a reporter LV ± 8 mM CsH (mean ± SEM, n = 5,

EV-TR LV ± CsH (mean ± SEM, n = 12).

sduced with an Ampho pseudotyped RV ± CsH (mean ± SEM, n = 4). IFITM3

M, n = 12, Mann-Whitney test versus Luc control, ***p % 0.001) (G) or THP-1

f IFITM3 were re-exposed to a reporter LV ± 8 mMCsH (mean ± SEM, n = 5) (H).

d) with the lysosome associated membrane protein 1 (LAMP1) marker (in blue)

s IFITM3 overexpressing the WT or Y20F form of IFITM3.
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Figure 5. CsH Rescues IFITM3-Dependent Early Impairment of LV Transduction in HSPCs

(A and B) IFITM3 was expressed (A) or depleted (B) in human CB-CD34+ cells (A: mean ± SEM, n = 7, Wilcoxon signed rank test versus mock = 1, *p = 0.0156;

B: mean ± SEM, n = 8, Wilcoxon signed rank test versus mock = 1, *p = 0.0313).

(C) IFITM3 protein levels were evaluated by western blot 3–5 days post overexpression and cells were re-challenged with an LV ± 8 mMCsH (Mann-Whitney test,

*p % 0.05).

(D) WT or Ifitm3 knock-out (Ifitm3�/�) murine Lin� HSPC were transduced with LV at MOI 1 ± CsH (mean ± SEM, n = 3 experiments in duplicate each

from 7 WT/Ifitm3�/� mice, Wilcoxon signed rank test versus DMSO = 1, *p = 0.0313; Mann-Whitney test; ns, not significant).

(E) Human CD34+ cells from individual donors were transduced at MOI 1 in duplicate and IFITM3 protein levels were evaluated at the time of transduction byWB,

quantified by densitometry using ImageJ software, normalized on Actin and then log-transformed (x axis). Transduction efficiencies were measured by fluo-

rescence-activated cell sorting (FACS) 5 days post-transduction and reported on y axis (mean ± SEM, n = 31 HSPC donors, Spearman correlation, ***p% 0.001,

r = �0.5671).

(F) Human CD34+ cells from individual donors were transduced at MOI 1 in duplicate ± 8 mMCsH and IFITM3 protein levels were evaluated and quantified at the

time of transduction as above (x axis). Transduction efficiencies are expressed in terms of fold-increase in presence of CsH versus DMSO (y axis) (mean ± SEM,

n = 19 HSPC donors, Spearman correlation, *p % 0.05, r = 0.5405).

See also Figure S5.
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serotypes that may lead to immune recognition of vector and

transduced cells (Boutin et al., 2010). Of note, the inability of

CsH to increase AAV6-based donor delivery and gene editing,

together with the unaltered overall DNA repair observed in CsH

exposed HSPC, indicates that CsH improves gene editing spe-

cifically through increasing IDLV donor delivery rather than other

effects on the efficiency of DNA break repair. Interestingly, CsH

seemed to increase targeting efficiencies in particular in the

more primitive HSC, previously shown to be more sensitive
8 Cell Stem Cell 23, 1–13, December 6, 2018
than committed progenitors to the cytotoxicity of the gene tar-

geting procedure and less proficient at performing HDR (Geno-

vese et al., 2014).

Our work reveals that CsH overcomes IFITM3-mediated anti-

viral restriction in HSPC at steady-state. Concordantly, stem

cells, including HSPC, have recently been shown to be naturally

resistant to RNA viral infections due to intrinsic expression of

subsets of antiviral ISGs including IFITM proteins (Wu et al.,

2018). This further supports the idea that constitutively



A

B

C

Figure 6. CsH Degrades IFITM3

(A) IFITM3 protein levels were evaluated in human bulk CB-CD34+ cells ± IFNa by immunofluorescence and quantified as integrated density with ImageJ software

after an overnight exposure to CsH (mean ± SEM of three independent experiments in duplicate, n = 18 images; Mann-Whitney test, ***p% 0.001, ****p% 0.0001)

or by western blot as above (one representative blot out of two is shown).

(legend continued on next page)
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expressed innate immune factors contribute to poor sensitivity of

HSPC to gene transfer and editing. The antiviral role of IFITM

proteins has been extensively described for a wide range of vi-

ruses (Lu et al., 2011; Perreira et al., 2013; Qian et al., 2015),

although the mechanisms of action remain unclear. IFITM sensi-

tivity of HIV-1 strains is determined by the co-receptor usage of

the viral envelope glycoproteins as well as IFITM subcellular

localization within the target cell (Foster et al., 2016). In LV

designed for gene therapy the HIV-1 envelope glycoprotein

has been replaced with the VSV-G envelope glycoprotein. In

agreement with our observations, IFITM proteins have been

recently shown to limit VSV-G pseudotyped lentivirus-based

vector gene transfer to airway epithelia (Hornick et al., 2016).

Interestingly, pseudotyping LV with the BaEV-TR glycoprotein

has been suggested to significantly improve transduction

efficiencies in human CD34+ cells compared to VSV-G pseudo-

typed vectors, including in unstimulated HSPC (Girard-Gagne-

pain et al., 2014), which is potentially explained by their capacity

to bypass IFITM3 restriction. Rapamycin and PGE2 are also

thought to enhance transduction at the level of VSV-G-mediated

viral entry, (Wang et al., 2014; Zonari et al., 2017), therefore the

involvement of IFITM3 in their effect is worth investigating.

Consistent with previous reports suggesting that IFITM3 acts

at the level of endosomal membrane fusion (Chesarino et al.,

2014; Foster et al., 2016; Jia et al., 2012), AAV6-mediated donor

DNA delivery did not benefit fromCsH. This vector does not have

an envelope and therefore does not fuse with endosomal mem-

branes to enter the cytoplasm (Nonnenmacher and Weber,

2012). Interestingly, CsH seems to abrogate IFITM3 by inducing

its degradation in HSPC and THP-1 cells but fails to impact the

non-restrictive Y20F mutant, potentially due to its misplaced

cellular localization mainly at the plasma membrane or because

Y20 phosphorylation has been suggested to prevent its ubiquiti-

nation by NEDD4 E3 ligase (Chesarino et al., 2014, 2015). Effects

of CsH on IFITM3 were transient as protein levels were restored

within 6 hr from CsH removal, likely explaining the requirement

for the drug during LV exposure for maximal effects.

Importantly, we observed a significant negative correlation

between IFITM3 protein levels and HSPC permissivity to LV

transduction between donors. The least permissive donors

expressed the highest IFITM3 levels and benefitted most from

CsH enhancement of transduction. These data suggest that

CsH will also abrogate donor variability during ex vivo gene ther-

apy, a major benefit for the design of better controlled clinical tri-

als and, eventually, standardized medicinal products based on

modification of HSC. Indeed, donor variability remains a signifi-

cant issue for the field as underscored also by the high variability

in gene marking recently observed for b-Thalassemia gene ther-

apy patients (Thompson et al., 2018). Variations in expression

levels of the antiretroviral host factor TRIM5a have also been

suggested to correlate with human CD34+ cell permissiveness

to lentiviral transduction (Evans et al., 2014) although human

TRIM5a inhibition of HIV-1 is demonstrably weak (Keckesova
(B) Freshly isolated FACS-sorted CD34+38�133+ HSC were transduced ± CsH

(mean ± SEM, n = 10 images; Mann-Whitney test versus DMSO, *p % 0.05).

(C) IFITM3 protein levels, evaluated by immunofluorescence or by WB as above,

form of IFITM3 were then exposed ± CsH (mean ± SEM of three independent ex

See also Figure S6.
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et al., 2006). It is possible that, differences in TRIM5a levels,

and other ISGs, reflect variable IFITM3 levels rather than direct

TRIM5a effects on transduction.

Overall, we have described how manipulating a single host

factor can have a dramatic impact on gene transfer efficiencies

in HSPC. Our findings are an important step toward the develop-

ment of maximally effective HSPC gene engineering protocols

and uncover hitherto unknown molecular mechanisms of innate

immune defense in human hematopoietic stem cells. We expect

exploitation in innovative cell and gene therapies and in broadly

effective antiviral strategies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-human FCR Blocking Miltenyi Biotec Cat# 130-059-901

Purified Rat Anti-Mouse CD16/CD32 BD Biosciences Cat# 553141; RRID:AB_394656

Anti-human CD45 APC-eFluor 780 eBioscience Cat# 47-0459-42; RRID:AB_1944368; clone HI30

Anti-human CD19 PE BD Biosciences Cat# 345789; clone SJ25C1

Anti-human CD33 BV BD Biosciences Cat# 562854; RRID:AB_2737405; clone WM53

Anti-human CD3 APC BD Biosciences Cat# 555335; RRID:AB_398591; clone UCHT1

Anti-human CD13 BV BD Biosciences Cat# 562596; RRID:AB_2737672; clone WM15

Anti-human CD34 PeCy7 BD Biosciences Cat# 348811; clone 8G12

Anti-human CD34 VB Miltenyi Biotec Cat# 130-095-393; RRID:AB_10827793

Anti human CD38 perCP/Cy5.5 BioLegend Cat# 356614; RRID:AB_2562183; clone HB-7

Anti-human CD38 PeVio770 Miltenyi Biotec Cat# 130-099-151; RRID:AB_2660384

Anti-human CD90 APC BD Biosciences Cat# 559869; RRID:AB_398677; clone 5E10

Anti-human CD133/2 PE Miltenyi Biotec Cat# 130-090-853; RRID:AB_244346; clone 293C3

Anti-human CD45RA PE Miltenyi Biotec Cat# 130-092-248; RRID:AB_615094

Anti-human CD45RA FITC BD Biosciences Cat# 335039; clone HI100

Mouse IgG1 isotype control BD PharMingen Cat# 51-35405X; clone MOPC-21

Mouse polyclonal anti-CypA Santa-Cruz Biotechnology Cat# sc-134310; RRID:AB_2169131

Mouse monoclonal anti-CypB Santa-Cruz Biotechnology Cat# sc-130626; RRID:AB_2169421

Rabbit polyclonal anti-IFITM3 Proteintech Cat# 11714-1-AP; RRID:AB_2295684

Rabbit polyclonal anti-IFITM2 Proteintech Cat# 12769-1-AP; RRID:AB_2122089

Mouse monoclonal anti-IFITM1 Proteintech Cat# 60074-1-Ig; RRID:AB_2233405

Mouse monoclonal anti-b-Actin Sigma-Aldrich Cat# A2228; RRID:AB_476697; clone AC-74

Mouse monoclonal anti-LAMP1 Abcam Cat# ab25630; RRID:AB_470708

Rabbit IgG HRP Linked Whole Ab GE Healthcare Cat# NA934; RRID:AB_772206

Mouse IgG, HRP-Linked Whole Ab GE Healthcare Cat# NA931; RRID:AB_772210

Donkey anti-Rabbit IgG, AlexaFluor 488 Thermo Fisher Scientific Cat# A-21206; RRID:AB_141708

Donkey anti-Rabbit IgG, AlexaFluor 555 Thermo Fisher Scientific Cat# A-31572; RRID:AB_162543

Donkey anti-Rabbit IgG, AlexaFluor 647 Thermo Fisher Scientific Cat# A-31573; RRID:AB_2536183

Biological Samples

Umbilical cord blood Ospedale San Raffaele (TIGET01/09) N/A

Peripheral blood Ospedale San Raffaele (TIGET01/09) N/A

Chemicals, Peptides, and Recombinant Proteins

Cyclosporine A Sigma-Aldrich Cat# C1832-5MG

Cyclosporine H Sigma-Aldrich Cat# SML1575-5MG

Rapamycin Sigma-Aldrich Cat# R8781

FK-506 Sigma-Aldrich Cat# 109581-93-3

Cyclohexamide Sigma-Aldrich Cat# 66-81-9

Prostaglandin E2 Cayman Cat# 14750

Human IFNa pbl assay science Cat# 11105-1

Puromycin Sigma-Aldrich Cat# P8833-25MG

DAPI (40,6-diamidino-2-phenylindole) Roche Cat# 10236276001

Hoechst 33342 Invitrogen Cat# H3570

StemSpan SFEM VODEN Cat# 09650
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GMP Serum-free Stem Cell Growth Cellgenix Cat# 20802-0500

Recombinant human stem cell factor Peprotech Cat# 300-07

Recombinant human thrombopoietin Peprotech Cat# 300-18

Recombinant human Flt3 ligand Peprotech Cat# 300-19

Recombinant human IL6 Peprotech Cat# 200-06

Recombinant human IL3 Peprotech Cat# 200-03

StemRegenin 1 (SR1) BioVision Cat# 1967

UM171 STEMCell Technologies Cat# 72912

3TC Sigma-Aldrich Cat# 134678-17-4

RetroNectin (r-Fibronectin CH-296) Takara Bio Cat# T100A

Bolt 4%–12% Bis-Tris Plus Gels Thermo Fisher Scientific Cat# NW04120BOX

20X Bolt MES SDS Running Buffer Invitrogen Cat# B0002

10X Bolt Sample Reducing Agent Thermo Fisher Scientific Cat# B0009

4X Bolt LDS Sample Buffer Thermo Fisher Scientific Cat# B0007

CD34 MicroBead Kit, human Miltenyi Biotec Cat# 130-046-702

Lineage cell depletion kit Miltenyi Biotec Cat# 130-090-858

CytofixFixation Buffer BD Biosciences Cat# 554655

Permeabilizing Solution 2 BD Biosciences Cat# 347692

CD4+ T Cell Isolation Kit, human Miltenyi Biotec Cat# 130-096-533

Pan Monocyte Isolation Kit, human Miltenyi Biotec Cat# 130-096-537

Critical Commercial Assays

Annexin V Apoptosis Detection Kit I BioLegend Cat# 640918; RRID:AB_1279044

Cell Proliferation Dye eFluor� 670 Thermo Fisher Scientific Cat# 65-0840-85

PE Mouse Anti-Ki-67 Set BD Biosciences Cat# 556027; RRID:AB_2266296

ReliaPrep RNA Cell Miniprep System Promega Cat# Z6011

QIAamp DNA Micro Kit QIAGEN Cat# 56304

RNAeasy micro QIAGEN Cat# 74004

RNAeasy Plus micro QIAGEN Cat# 74034

SuperScript Vilo kit Invitrogen Cat# 11754250

P3 Primary Cell 4D-Nucleofector X Kit Lonza Cat# V4XP-3032

T7 Endonuclease I New England Biolabs Cat# M0302L

LV GFP gene (Mr03989638_mr) Thermo Fisher Scientific Cat# 4331182

Human PPIA gene (Hs99999904_m1) Thermo Fisher Scientific Cat# 4331182

Human PPIB gene (Hs00168719_m1) Thermo Fisher Scientific Cat# 4331182

Human IRF7 gene (Hs01014809_g1) Thermo Fisher Scientific Cat# 4331182

Human ISG15 gene (Hs01921425_s1) Thermo Fisher Scientific Cat# 4331182

Human IFITM1 gene (Hs00705137_s1) Thermo Fisher Scientific Cat# 4331182

Human IFITM2 gene (Hs00829485_sH) Thermo Fisher Scientific Cat# 4331182

Human IFITM3 gene (Hs03057129_s1) Thermo Fisher Scientific Cat# 4331182

Human HPRT1 gene (Hs01003267_m1) Thermo Fisher Scientific Cat# 4331182

Experimental Models: Cell Lines

293T cells (HEK293T) ATCC Cat# CRL-11268; RRID:CVCL_1926

THP-1 ATCC Cat# TIB-202; RRID:CVCL_0006

CB-CD34 Lonza Cat# 2C-101

BM-CD34 Lonza Cat# 2M-101C

mPB-CD34 All Cells Cat# mPB015F/mPB016F

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJArc Mus

musculus

Jackson laboratory (IACUC 784

and 749)

Cat# ARC:NSG, RRID:IMSR_ARC:NSG

Ifitm3�/� mice Wellcome Trust Sanger Institute;

Lange et al., 2008

N/A

Oligonucleotides

See Table S1 This paper N/A

Recombinant DNA

pCCLsin.cPPT.hPGK.eGFP.Wpre transfer Petrillo et al., 2015 N/A

pMDLg/Prre packaging Petrillo et al., 2015 N/A

pCMV-Rev Petrillo et al., 2015 N/A

pMD2.VSV-G Petrillo et al., 2015 N/A

pMD.Lg/pRRE.D64VInt Petrillo et al., 2015 N/A

pMDLg/pRRE-N74D GenScript Inc N/A

pMDLg/pRRE-P90A GenScript Inc N/A

BaEV-TR Girard-Gagnepain et al., 2014 N/A

RVrkat43.2MLV GFP Montini et al., 2006 N/A

pCM-gag-pol Montini et al., 2006 N/A

AmphoRV Ragheb et al., 1995 N/A

SIVmac-GFP Mangeot et al., 2002 N/A

SIV3+ Mangeot et al., 2002 N/A

pSVRDNBDM Griffin et al., 2001 N/A

pSVRDNBGFPDH Griffin et al., 2001 N/A

pONY3 Mitrophanous et al., 1999 N/A

pONY8 Mitrophanous et al., 1999 N/A

FP93 Poeschla et al., 1998 N/A

pGINSIN Poeschla et al., 1998 N/A

plko shRNA CypA Open Biosystems TRCN0000049232

plko shRNA IFITM3 Sigma-Aldrich TCRN0000118022

Software and Algorithms

FACSDIVA software BD Biosciences N/A

ImageJ NIH https://imagej.nih.gov/ij/

GraphPad Prism GraphPad Software https://www.graphpad.com/scientific-software/

prism/

FCS Express Flow De Novo Software https://www.denovosoftware.com/site/

DownloadResearch.shtml

Vector NTI Invitrogen N/A

Image Lab Biorad N/A

QuantaSoft Biorad N/A

QuantStudio Real-Time PCR software Applied Biosystems N/A
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to, and will be fulfilled by the Lead Contact, Anna Kajaste-Rudnitski

(kajaste.anna@hsr.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG, RRID:IMSR_ARC:NSG)Mus musculus were purchased from Jackson laboratory. All animal

procedures were performed according to protocols approved by the Animal Care and Use Committee of the Ospedale San Raffaele
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(IACUC 784 and 749) and communicated to theMinistry of Health and local authorities according to the Italian law. Female 8-10week

old mice were used in all studies to allow better engraftment of human HSPC cells upon tail vein transplantation (Notta et al., 2010).

Mice were observed carefully by laboratory staff and veterinarian personnel for health and activity. Animals weremonitored to ensure

that food and fluid intakemeets their nutritional needs.Micewere housed in cageswithmicroisolator tops on ventilated or static racks

in a specific pathogen-free facility. All caging materials and bedding are autoclaved. All mice were randomized into different HSC

transplantation groups. On the basis of a standard backward sample size calculation, we transplanted at least three to ten mice

per condition and performed at least two independent experiments to obtain a sufficient number of mice to perform statistical anal-

ysis. Human cell engraftment was blindly assessed by serial bleeding or bone marrow as well as spleen analysis at sacrifice. At the

end of the experiments mice were euthanized by CO2 and organs were harvested and analyzed as reported in the Method Details

section.

Cells
Primary cells were isolated from umbilical cord blood or from mononuclear cells collected upon informed consent from healthy

volunteers according to the Institutional Ethical Committee approved protocol (TIGET01/09). Otherwise, cord blood (CB), bone

marrow (BM) or G-CSF mobilized peripheral blood (mPB) CD34+ cells were directly purchased from Lonza or Hemacare. For the

majority of the experiments HSPC from male and female donors were pooled together to have sufficient number of cells for each

experiment. Regarding the correlation study between LV transduction and IFITM3 protein levels we collected HSPC from the

cord blood of single donors without indications regarding the sex.

Total bone marrow from n = 7 background-matched 8-10 week old wild-type and Ifitm3�/� mice (Wellcome Trust Sanger Institute)

(Lange et al., 2008) were collected and murine Lin� cells were isolated as described in Method Details.

METHOD DETAILS

Vectors
Third generation LV stocks were prepared, concentrated and titered as previously described (Dull et al., 1998; Follenzi et al., 2000).

Briefly, self-inactivating (SIN) LV vectors were produced using the transfer vector pCCLsin.cPPT.hPGK.eGFP.Wpre, the packaging

plasmid pMDLg/pRRE, Rev-expressing pCMV-Rev and the VSV-G envelop-encoding pMD2.VSV-G plasmids. IDLV was produced

as previously described (Lombardo et al., 2007) substituting the packaging plasmid pMDLg/pRRE with pMD.Lg/pRRE.D64VInt. For

SINLV capsid mutants, vectors were produced as described above, except that the wild-type pMDLg/pRRE was replaced with a

packaging plasmid harboring a specific point-mutation in the p24 coding region as follows: pMDLg/pRRE-N74D; pMDLg/pRRE-

P90A. All modified packaging plasmidswere purchased fromGenScript Inc. For pseudotyping LVswith themutant baboon retrovirus

envelope, pMD2.VSV-G was replaced by the BaEV-TR during vector production as previously described (Girard-Gagnepain et al.,

2014). Vpx-containing lentiviral vector stocks were produced as previously described (Bobadilla et al., 2013). The SIN-RV was

produced as previously described (Montini et al., 2006) using as transfer vector RVrkat43.2MLV GFP, the packaging plasmid

pCM-gag-pol and the VSV-G envelop-encoding pMD2.VSV-G plasmid or pseudotyped with the amphotropic envelope glycoprotein

(AmphoRV). Simian immunodeficiency virus macaque- (SIVmac) based vectors were produced as previously described (Mangeot

et al., 2002) using an GFP encoding genome SIVmac-GFP, SIVmac packaging plasmid SIV3+ kindly provided by Francois Loic

Cosset and VSV-G pseudotyped. HIV-2 was prepared using HIV-2 packaging construct pSVRDNBDM (also known as HIV-2

pack) and HIV-2 genome encoding GFP pSVRDNBGFPDH (also known as HIV-2 GFP) kindly provided by Andrew Lever (Griffin

et al., 2001). SIV sooty mangabey (SIVsm) GFP encoding vector was made using an SIVmac delta Env construct encoding SIVsm

Gag-Pol and with GFP in place of nef kindly provided by Welkin Johnson. Equine Infectious Anaemia Virus (EIAV) GFP was prepared

using EIAV packaging construct pONY3 and GFP encoding EIAV genome pONY8 kindly provided by Kyriacos Mitrophanous (Mitro-

phanous et al., 1999). Feline immunodeficiency virus (FIF GFP) wasmade using FIVpetaluma packaging construct FP93 and FIV GFP

encoding genome pGINSIN kindly provided by Eric Poeschla (Poeschla et al., 1998). Moloney MLV GFP was produced using MLV

packaging construct CMVintron and MLV genome encoding GFP CNCG kindly provided by Francois Loic Cosset. AAV6 donor tem-

plates for homology-directed repair (HDR) were generated from a construct containing AAV2 inverted terminal repeats, produced by

triple-transfection method and purified by ultracentrifugation on a cesium chloride gradient as previously described (Wang et al.,

2015). Clinical-grade arylsulfatase A (ARSA) and a-l-iduronidase (IDUA) LVs were produced by MolMed (Milan, Italy) using a large

scale validated process as previously reported (Biffi et al., 2013). The bidirectional LVs (Amendola et al., 2013) were used to over-

express the coding sequence (CDS) of candidate human genes under the control of the human phosphoglycerate kinase (PGK) pro-

moter and the eGFP and the minimal cytomegalovirus (mCMV) promoter forming the antisense expression unit. Knock-down (KD)

experiments were performed using plko or vectors encoding shRNA against human CypA (from Open Biosystems,

TRCN0000049232), IFITM3 (from Sigma, TCRN0000118022) or non-silencing (ns) as controls, or pcSIREN vectors expressing

shRNA against CNA, all under the human U6 promoter. The plko ns was designed to express an unrelated shRNA with no predicted

target as control. Knock-out (KO) experiments were performed using LVs co-expressing a mammalian codon-optimized

Cas9 nuclease along with a single guide RNA (sgRNA) (Shalem et al., 2014) against the gene of interest (sgRNA IFITM3:

GGGGGCTGGCCACTGTTGACAGG). As control LV KO-empty with no sgRNA was used.
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Cells
Cell lines

The human embryonic kidney 293T cells (HEK293T, RRID:CVCL_1926) were maintained in Iscove’s modified Dulbecco’s medium

(IMDM; Sigma), instead human THP-1 cells (RRID:CVCL_0006) were maintained in Roswell Park Memorial Institute medium

(RPMI; Lonza). Both medium were supplemented with 10% fetal bovine serum (FBS; GIBCO), penicillin (100 IU/ml), streptomycin

(100 mg/ml) and 2% glutamine.

Primary cells

Human CD34+ HSPC, CD4+ and CD14+ monocytes were isolated through positive magnetic bead selection according to

manufacturer’s instructions (Miltenyi) from umbilical cord blood or from mononuclear cells collected upon informed consent from

healthy volunteers according to the Institutional Ethical Committee approved protocol (TIGET01/09). Otherwise, cord blood (CB),

bone marrow (BM) or G-CSF mobilized peripheral blood (mPB) CD34+ cells were directly purchased from Lonza or Hemacare.

CD4+ T cells were activated in RPMI, supplemented with 10% FBS, penicillin (100 IU/ml), streptomycin (100 mg/ml), 2% glutamine,

phytohaemagglutanin (PHA) (2 mg/ml, Roche) and IL-2 (300IU/mL, Novartis) for three days and maintained in RPMI, supplemented

with 10% FBS, penicillin (100 IU/ml), streptomycin (100 mg/ml), 2% glutamine and IL-2 (300 UI/ml). Monocyte-derived macrophages

(MDM) were differentiated from isolated CD14+ monocytes in DMEM supplemented with 10% FBS, penicillin (100 IU/ml), strepto-

mycin (100 mg/ml), 2% glutamine and 5% human serum AB (Lonza) for seven days. Primary T lymphocytes from healthy donors’

PB mononuclear cells were isolated and activated using magnetic beads conjugated to anti-human CD3 and CD28 antibodies

(Dynabeads human T-activator CD3/CD28; Invitrogen) in IMDM medium (GIBCO-BRL) supplemented with penicillin, streptomycin,

glutamine, 10%FBS, and 5 ng/ml of IL-7 and IL-15 (PeproTech) for 2 days as described (Provasi et al., 2012). BM cells were retrieved

from femurs, tibias, and homer of 8-10 week old wild-type and Ifitm3�/� mice (Wellcome Trust Sanger Institute, (Lange et al., 2008).

HSPCs were purified by Lin- selection using the mouse Lineage Cell Depletion Kit (Miltenyi Biotec) according to the manufacturer’s

instructions.

All cells were maintained in a 5% CO2 humidified atmosphere at 37�C.

Compounds
Cyclosporine A, Cyclosporine H, Rapamycin, FK-506 and cyclohexamide (CHX) (all from Sigma-Aldrich) were resuspended and

stored following the manufacturer’ s instructions. They were added to the transduction medium at the indicated concentration

(8 mM for Cyclosporines and 10 mg/ml for Rapa) and washed out with the vector 16-20 hours later. For the FK-506 experiment,

THP1 cells were pre-treated with IFNb (1000U) for 24 h and FK-506 (0.5-1000nM) was added at the time of transduction and left

in the media until cells were harvested 48 h post transduction. CHX (1 mg/ml) was added with IFNb treatment (1000U) 24 h prior

to transduction in THP-1 cells. CHX (10 mg/ml) was added to the medium one hour before CsH wash and re-added during LV trans-

duction for 6 hours in human HSPC. Where described, Prostaglandin E2 (Dinoprostone from Yonsung) was added at the final con-

centration of 10 mM two hours before LV transduction. Human IFNa pre-stimulation was performed for 24 hours together with human

cytokines cocktail at the indicated concentration.

Transduction
If not otherwise specified, all vectors used in this work are vesicular stomatitis virus glycoprotein (VSV-g)-pseudotyped. All cells were

transduced at the indicated multiplicity of infection (MOI) as calculated by titration of vector stocks on 293T cells and expressed as

transducing units (TU)/293T cell. For transduction, human CB-derived hematopoietic stem/progenitor cells (HSPC) were cultured in

serum-free StemSpan medium (StemCell Technologies) supplemented with penicillin (100 IU/ml), streptomycin (100 mg/ml),

100 ng/ml recombinant human stem cell factor (rhSCF), 20 ng/ml recombinant human thrombopoietin (rhTPO), 100 ng/ml recombi-

nant human Flt3 ligand (rhFlt3), and 20 ng/ml recombinant human IL6 (rhIL6) (all from Peprotech) 16 to 24 hours prior to transduction.

HSPC were then transduced at a concentration of 1 3 106 cells per milliliter with a given vector for 16 hours at the indicated multi-

plicity of infection (MOI), expressed as transducing units (TU)/293T cell, in the same medium. For CHX experiments in HSPC, after

24 hours of prestimulation cells were exposed or not to CsH for 16 hours and then transduced for 6 hours in different conditions:

vector alone called ‘‘Reference protocol’’; exposed to the vector after cell wash in absence ‘‘Wash protocol’’ or in presence ‘‘CHX

protocol’’ of CHX. Bone marrow and G-CSF mobilized peripheral blood CD34+ cells were placed in culture on retronectin-coated

non tissue culture-treated wells (T100A Takara) in CellGro medium (Cell Genix) containing a cocktail of cytokines: 60 ng/ml IL-3,

100 ng/ml TPO, 300 ng/ml SCF, and 300 ng/ml FLT-3L (all from Cell Peprotech). Cells were then transduced with the indicated

dose of vectors for 14-15 hours in the same cytokine-containing medium. After transduction with a single hit reporter LV cells

were washed and maintained in serum-free medium supplemented with cytokines as above until the reading of the percentage

of positive cells by FACS, after which they were maintained in IMDM supplemented with 10% FBS, 25 ng/ml rhSCF, 5 ng/ml

rhIL6-3, 25 ng/ml rhFlt3 and 5 ng/ml rhTPO for another seven days before analysis of vector copy numbers. In the protocol that

foresees two rounds of transduction, selected for clinical application, cells were washed for 10 hours in CellGro SCGM medium

supplemented with cytokines and underwent a second hit of transduction in the same conditions as the first, as reported previously

(Biffi et al., 2013). At the end of transduction, cells were counted and collected for clonogenic assays, flow cytometry, and in vivo

studies. Remaining cells were plated in IMDM 10% fetal bovine serum (FBS) with cytokines (IL-3, 60 ng/ml; IL-6, 60 ng/ml; SCF,

300 ng/ml) and cultured for a total of 14 days. Thereafter, cells were collected for molecular and biochemical studies. Unstimulated

HSPC were transduced freshly isolated in StemSpan medium supplemented with penicillin (100 IU/ml), streptomycin (100 mg/ml) for
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16-24hours and then maintained in presence of human cytokines and 10mM of the reverse-transcriptase inhibitor 3TC (from SIGMA)

to avoid subsequent transduction due to cytokines stimulation.

Murine Lin- HSPC were cultured in serum-free StemSpan medium (StemCell Technologies) containing penicillin, streptomycin,

glutamine and a combination of mouse cytokines (20 ng/ml IL-3, 100 ng/ml SCF, 100 ng/ml Flt-3L, 50 ng/ml TPO all from Peprotech),

at a concentration of 106 cells/ml. After three hours of pre-stimulation, cells were transduced with an LV for 16-20 hours in the same

medium. Cells were then washed and maintained in serum-free medium supplemented with cytokines as above until the reading of

the percentage of positive cells by FACS, after which they were diluted in IMDM supplemented with 10% FBS.

MDM were transduced 7 days after differentiation. T lymphocytes were transduced at a concentration of 106 cells/ml, after

2-3 days of stimulation. The cells were exposed to the vector for 16-20 hours.

Gene editing of human cells
LV donor templates for HDR were generated using HIV-derived, third-generation self-inactivating transfer constructs. IDLV stocks

were prepared and titered as previously described (Lombardo et al., 2007). AAV6 donor templates for HDR were generated from

a construct containing AAV2 inverted terminal repeats, produced by triple-transfection method and purified by ultracentrifugation

on a cesium chloride gradient as previously described (Wang et al., 2015). For gene editing experiments in human HSPC,

106 CD34+ cells/ml were stimulated in serum-free StemSpan medium (StemCell Technologies) supplemented with penicillin, strep-

tomycin, glutamine, 1 mM SR-1 (Biovision), 50 mMUM171 (STEMCell Technologies), 10 mM PGE2 added only at the beginning of the

culture (Cayman), and human early-acting cytokines (SCF 100 ng/ml, Flt3-L 100 ng/ml, TPO 20 ng/ml, and IL-6 20 ng/ml; all

purchased from Peprotech) (Schiroli et al., 2017). Transduction with IDLV was performed at MOI 100, in presence or not of CsH, after

2 days of prestimulation. CD34+ cells were transduced with AAV6 at 10^4 vg/cell 15’ after electroporation. IDLV or AAV6 donor

templates with homologies for AAVS1 locus (encoding for a PGK.GFP reporter cassette; (Genovese et al., 2014) or targeting the

intron 1 of IL2RG (encoding for IL2RG corrective cDNA; (Schiroli et al., 2017) were utilized as indicated. After 24 hours from IDLV

transduction, cells were washed with PBS and electroporated (P3 Primary Cell 4D-Nucleofector X Kit, program EO-100; Lonza)

with 1.25 mM of ribonucleoproteins (RNP). RNPs were assembled by incubating at 1:1.5 molar ratio s.p.Cas9 protein (Integrated

DNA Technologies) with synthetic cr:tracrRNA (Integrated DNA Technologies) for 10’ at 25�C. Electroporation enhancer (Integrated

DNA Technologies) was added prior to electroporation according to manufacturer’s instructions. Genomic sequences recognized

by the gRNAs are the following: TCACCAATCCTGTCCCTAGtgg for AAVS1 locus and ACTGGCCATTACAATCATGTggg for

intron 1 IL2RG.Gene editing efficiency wasmeasured from cultured cells in vitro 3 days after electroporation. ForAAVS1 edited cells,

editing by homology-directed repair (HDR) was quantified by flow cytometry measuring the percentage of cells expressing the GFP

marker. For IL2RG edited cells, HDR was quantified by digital droplet PCR analysis designing primers and probe on the junction

between the vector sequence and the targeted locus and on control sequences utilized as normalizer (human TTC5 genes) as pre-

viously described (Schiroli et al., 2017). NHEJ was was measured by mismatch-sensitive endonuclease assay by PCR-based ampli-

fication of the targeted locus followed by digestion with T7 Endonuclease I (NEB) according to the manufacturer’s instructions.

Transplantation of human HSPC in NSG mice
Human mPB-CD34+ cells were pre-stimulated and transduced as described before with IDUA-LV at an MOI of 50 in presence or not

of DMSO/CsH. After transduction 2-5x105 cells were infused into the tail vein of sublethally irradiated 8-10 week-old NSG mice

(radiation dose: 200 cGy for mice weighting 18-25 g and of 220 cGy for mice above 25 g of weight). Transduced and untransduced

cells were also cultured in vitro for 14 days for further analysis. In vitro cultured cells, BM and spleen cells isolated from transplanted

mice at time of sacrifice were then used to quantify the VCN by qPCR. For secondary transplantation experiments 83 104 stimulated

human CB-derived CD34+ cells were injected into the tail vein of primary NSGmice after an over-night transduction with a PGK-GFP

Molmed purified vector (DSP05). Peripheral blood was sampled at indicated times post-transplant and analyzed. At sacrifice, the

cells from the spleen and BM isolated from the primary recipients were analyzed at flow cytometry and the CD34+ cells were purified

from theBM through positivemagnetic bead selection on LD andMScolumns (Miltenyi) according to themanufacturer’s instructions.

Purity was verified by FACS prior to pooling by condition and injection into secondary recipients. Between 93 105 and 13 106 CD34+

cells isolated from the primary hosts were injected into the tail vein of sublethally irradiated secondary NSG mice (8–10 weeks old).

Peripheral blood was sampled at indicated times post-transplant. 13 weeks post-transplantation, all mice were sacrificed by CO2 to

analyze the BM and the spleen of secondary mice as described above (Piras et al., 2017). For transplantation of gene edited cells,

3x105 CD34+ cells treated for editing at day 5 of culture were injected intravenously into NSG mice after sub-lethal irradiation

(180-200 cGy). Human CD45+ cell engraftment and the presence of gene-edited cells were monitored by serial collection of blood

from the mouse tail and, at the end of the experiment (19 weeks after transplantation), BM was harvested and analyzed.

Colony-forming cell assay
Colony-forming cell assays were performed by plating 8x102 human HSPC transduced in presence of the different compounds in a

methylcellulose-based medium (Methocult GF4434; Stem Cell Technologies). Fifteen days later colonies were scored by light micro-

scopy for colony numbers and morphology as erythroid or myeloid. Moreover, they were collected as a pool and as a single colony,

and lysed for molecular analysis to evaluate transduction efficiencies with clinical grade LV.
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Flow cytometry and cell sorting
All cytometric analyses were performed using the FACS Canto III instrument and LSRFortessa instruments (BD Biosciences) and

analyzed with the FACS Express software (DeNovo Software). Sorting procedures were performed on aMoFlo XDP sorter (Beckman

Coulter).

FACS sorting

Fresh human cord blood-derived CD34+ cells were FACS-sorted according to CD133 and CD38 expression as shown in Figure 6C.

The sorted subpopulations were exposed or not to CsH for 16 hours and then analyzed by IF for IFITM3 protein expression.

Transduced cells

GFP or BFP expression in transduced cells was measured 5-7 days post-transduction and expressed as transduction level (%).

Adherent MDM were detached by scraping in 5mM PBS-EDTA, washed and resuspended in PBS containing 2% fetal bovine serum

(FBS). Cells grown in suspension were washed and resuspended in PBS containing 2% FBS. To measure HSPC subpopulation

composition cells were harvested 16 or 72 hours post-TD, incubated with anti-human receptor blocking antibodies for 15 min

at 4�C and then stained for 20 min at 4�C with anti-human CD34 (RRID:AB_10827793), CD38 (RRID:AB_2562183), CD45RA

(RRID:AB_615094), CD90 (RRID:AB_398677) or with anti-human CD34, CD133 (RRID:AB_244346), CD90 antibodies (for antibodies

see Key Resources Table). To exclude dead cells from the analysis, 10 ng/ml 7-aminoactinomycin D (7-AAD) was added.

Peripheral blood from mice

For each mouse, 250 mL of peripheral blood were added to 15 mL of PBS containing 45 mg/mL EDTA. For immunostaining a known

volume of whole blood (100 ml) was first incubated with anti-human FcR Blocking Reagent and anti-mouse FcgIII/II receptor (Cd16/

Cd32) blocking antibodies for 15 min at 4�C and then incubated in the presence of anti-human CD45 (RRID:AB_1944368), CD19,

CD13, CD3 (RRID:AB_398591) (for antibodies see Key Resources Table) for 20 min at 4�C. Erythrocytes were removed by lyses

with the TQ-Prep workstation (Beckman-Coulter) in the presence of an equal volume of FBS (100 ml) to protect white blood cells.

Bone marrow

BM cells were obtained by flushing the femurs in PBS 2% FBS solution. Cells (1x106 cells) were washed, resuspended in 100 mL of

PBS containing 2% FBS, and incubated with anti-human receptor (Cd16/Cd32) blocking antibodies for 15 min at 4�C. Staining was

then performed with anti-human CD45, CD19, CD33 (for antibodies see Key Resources Table) for 20 min at 4�C. Cells were washed

and finally resuspended in PBS containing 2% FBS.

Spleen

Spleens were first smashed and the resulting cell suspension was passed through 40 mm nylon filter and washed in cold phosphate

buffered saline (PBS) containing 2mMEDTA and 0.5% bovine serum albumine (BSA). Cells were incubated with anti-human receptor

(Cd16/Cd32) blocking antibodies for 15min at 4�Cand then stainedwith anti-humanCD45, CD19, CD13, CD3 (for antibodies see Key

Resources Table) for 20 min at 4�C. Cells were finally washed and resuspended in PBS containing 2% FBS.

Ki67-Hoechst and Annexin V flow cytometry

Cells were washed and fixed using BD Cytofix buffer (Cat. #554655), washed and permeabilized with BD Perm 2 (Cat. # 347692),

washed and stained with PE-conjugated Ki67 antibody (BD, RRID:AB_2266296) and finally resuspended in BD Cytofix buffer with

Hoechst at 1 mg/mL. The cells were then analyzed on a BD LSRII machine with UV laser. The apoptosis assays were performed

with the Annexin V Apoptosis Detection Kit I (BD Pharmigen, RRID:AB_1279044) according to the manufacturer’s instructions

and 48 hours after transduction.

Cell proliferation assay

Cells were stained with Cell Proliferation Dye eFluor� 670 (Affimetrix, eBioscience) after 24 hours of cytokines pre-stimulation and

before cell transduction. This fluorescent dye binds to any cellular protein containing primary amines, and as cells divide, the dye is

distributed equally between daughter cells that can be measured as successive halving of the fluorescence intensity of the dye. At

different time points after TD, cells were harvested and analyzed at flow cytometry. Cell Proliferation Dye eFluor� 670 has a peak

excitation of 647 nm and can be excited by the red (633 nm) laser line. It has a peak emission of 670 nm and can be detected

with a 660/20 band pass filter (equivanet to APC, Alexa Fluor� 647, or eFluor� 660).

RNA extraction, qPCR and gene expression analysis
RNA extraction from cells was performed using the RNeasy micro Kit or RNeasy Plus micro Kit (QIAGEN) or ReliaPrep RNA Cell Mini-

prep System (Promega). Briefly, cells were lysed in Buffer RLT plus, supplemented with beta-mercaptoethanol. RNA was then ex-

tracted according to manufacturer’s instructions. The extracted mRNAs were reverse transcribed (RT) using the SuperScript Vilo

kit (11754250; Invitrogen). RT-qPCR analyseswere performed using TaqMan probes fromApplied Biosystems to detect endogenous

mRNA levels. Otherwise, we designed specific primers to quantify the overexpression of the coding sequence of human IFITM2 and

IFITM3 genes (see below). Q-PCR was run for 40 cycles using the Viia 7 instrument while the Viia 7 software was then used to extract

the raw data (Ct). To determine gene expression, the difference (DCt) between the threshold cycle (Ct) of each gene and that of the

reference gene was calculated by applying an equal threshold. Relative quantification values were calculated as the fold-change

expression of the gene of interest over its expression in the reference sample, by the formula 2–DDCt. The expression was normalized

using the housekeeping gene HPRT1. Human Taqman probes from Applied Biosystems were used and reported in Key

Resources Table.
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Replication intermediates
CB-derived CD34+ cells were transduced at an MOI of 100, in presence or absence of CsA or CsH. To analyze viral replication

intermediates, transduced cells were washed and resuspended in Monini lysis buffer (0.1% polyoxyethylene 10 lauryl ether (Sigma),

0.1mg/mL proteinase K (Promega) (25 ml/ 1X105 cells), incubated at 65�C for 2 h and heat inactivated at 94�C for 15min (Monini et al.,

1999). Lysis of the cells to retrieve Late-RT and 2-LTR intermediates was performed at 6 or 24 hours post-transduction respectively.

Late-RT and 2LTR circles were measured by quantitative droplet digital-PCR (dd-PCR) assay with primers described below and

normalized using the human TERT gene.

To measure RT products in transduced THP-1 cells, DNA was harvested at 6 h post-transduction using the QIAGEN DNeasy

Blood and Tissue kit, as per manufacturer’s instructions. qPCR was performed using 2x TaqMan Gene Expression Master Mix

(ThermoFisher) and primers and probe for GFP present in the LV genome (LV GFP gene). All the primers used were reported in

Key Resources Table.

Genomic DNA extraction and qPCR
DNA from human CD34+ liquid culture, hematopoietic colony pool samples as well as from murine tissues was extracted using a

Maxwell 16 instrument (Promega) or Blood & Cell Culture DNA micro kit (QIAGEN). DNA from single colonies was lysed in Monini

buffer as previously described (Cassetta et al., 2013). Vector copies per diploid genome (vector copy number, VCN) of the integrated

lentiviral vectors were quantified by quantitative droplet digital-PCR (dd-PCR) using the primers against the primer binding site region

of LVs. VCN quantification of the total lentiviral DNA (integrated and non-integrated) was performed as previously described (Mátrai

et al., 2011) at three days post-transduction. Copy numbers of the reverse transcribed retroviral vector genome (both integrated and

non-integrated) was performed by quantitative droplet digital-PCR (dd-PCR) discriminating it from plasmid carried over from the

transient transfection using the primers called DU3 sense and PBS antisense and reported in Key Resources Table. Vector copy

numbers and replication intermediates were normalized to genomic DNA content, which was assessed using the human TERT

gene. VCN analysis by ddPCR involved quantification of target and reference loci through the use of duplex target and reference as-

says. In QuantaSoftsoftware copy number was determined by calculating the ratio of the target molecule concentration to the refer-

ence molecule concentration, times the number of copies of reference species in the genome (usually 2). Transduction efficiencies

were evaluated by ddPCR on individual colonies from CFC assay performed on the HSCs transduced with clinical grade LVs and

expressed as percentage (%) of LV+ colonies on total tested as previously reported (Biffi et al., 2013). PCR reaction for ddPCR is:
Cycling step Temperature � C Time Number of Cycles

Enzyme Activation 95 5 min 1 ddPCR 200 or 300nM

Denaturation 95 30 s 40

Annealing/Extension 63 1 min 40

Signal Stabilization 4 5 min 1

90 5 min 1

Hold (Optional) 4 Infinite 1
Western Blot
Whole cell extracts were prepared as previously described (Kajaste-Rudnitski et al., 2006, 2011). Samples were subjected to SDS-

PAGE using Bolt 4%–12% Bis-Tris Plus Gels (Thermo Fisher Scientific), transferred to PVDF membrane by electroblotting, and

blotted with mouse polyclonal antibody (Ab) raised against CypA (1:500 dilution, RRID:AB_2169131); mouse anti-CypB monoclonal

Ab (1:500 dilution, RRID:AB_2169421); rabbit anti-IFITM3 polyclonal Ab (1:1000 dilution, RRID:AB_2295684); rabbit anti-IFITM2

polyclonal Ab (1:2500, RRID:AB_2122089); mouse anti-IFITM1 monoclonal Ab (1:5000, RRID:AB_2233405). A mouse monoclonal

anti-beta-actin Ab (1;1000 dilution, RRID:AB_476697) was used as a normalizer. After the incubation with primary antibodies,

PVDF membranes were washed three times with tris-buffered saline (TBS) 0.1% tween 20 for 5 minutes and then incubated for

one hour with rabbit or mouse IgG secondary antibodies (1:10000; RRID:AB_772206, RRID:AB_772210).

Immunofluorescence microscopy
3x104 to 5x104 THP-1 or CBCD34+ cells were seeded in Multitest slide glass 10-well 8mm (from MP Biomedicals) precoated with

poly-L-lysine solution (Sigma-Aldrich) for 20 minutes. Cells were fixed with 4% paraformaldehyde (in 1X PBS) for 20 minutes at

room temperature and permeabilized with 0.1% Triton X-100 for 20 minutes at room temperature. For blocking non-specific sites

cells were incubated 30 minutes in PBG (5% BSA, 2% gelatin from cold water fish skin, from Sigma-Aldrich) and then stained

for 2 till 16 hours with rabbit anti-IFITM3 polyclonal antibody (1:200 dilution) and or with a mouse monoclonal anti-LAMP1 (1:100,

RRID:AB_470708). After 3 washes with 1X phosphate-buffered saline, cells were incubated with donkey anti-Rabbit IgG, Alexa Fluor

488 (RRID:AB_141708) or 555 (RRID:AB_162543) or 647 (RRID:AB_2536183) (1:500 dilution fromThermo Fisher Scientific) for 2 hours

at room temperature. Nuclei were stained with DAPI (40,6-diamidino-2-phenylindole) for 10 minutes at room temperature. Images
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were recorded using the TCS SP5 Leica confocal microscope, 60xwith oil and quantified as integrated density with ImageJ software.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were conducted with GraphPad Prism 5.04 version. In all studies, values are expressed as mean ± standard

error of the mean (SEM) and all n numbers represent biological repeats. Statistical analyses were performed by Mann Whitney or

Wilcoxon Signed Rank test between means of two groups and by ANOVA or Dunn’s adjusted Kruskal–Wallis for multiple compari-

sons, as indicated in the Figure legends. For WB quantifications, signal was quantified by densitometry using the ImageJ software

and normalized to actin, then log10 transformed for the purposes of the correlation statistics and graphical representation when

needed. For correlation studies Spearman’s rank correlation coefficient was calculate. Experimental models were randomly as-

signed to treatment groups.

Differences were considered statistically significant at *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ‘‘ns’’ represents non

significance.
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