6,791 research outputs found

    Following in Your Parents' Footsteps? Empirical Analysis of Matched Parent-Offspring Test Scores

    Get PDF
    In this paper, we explore whether an intergenerational relationship exists between the reading and mathematics test scores, taken at ages 7, 11 and 16, of a cohort of individuals born in 1958 and the equivalent test scores of their offspring measured in 1991. Our results suggest that how the parent performs in reading and mathematics during their childhood is positively related to the corresponding reading and mathematics test scores of their offspring as measured at a similar age. Our findings imply that parental ability in numeracy and literacy as a child is positively associated with the ability in numeracy and literacy of their offspring. With respect to gender, a fatherÂŽs (motherÂŽs) test score generally has a positive influence on the test scores of their daughter (son)

    Relational Reasoning Network (RRN) for Anatomical Landmarking

    Full text link
    Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for craniomaxillofacial (CMF) bones. Available methods require segmentation of the object of interest for precise landmarking. Unlike those, our purpose in this study is to perform anatomical landmarking using the inherent relation of CMF bones without explicitly segmenting them. We propose a new deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations of the landmarks. Specifically, we are interested in learning landmarks in CMF region: mandible, maxilla, and nasal bones. The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units and without the need for segmentation. For a given a few landmarks as input, the proposed system accurately and efficiently localizes the remaining landmarks on the aforementioned bones. For a comprehensive evaluation of RRN, we used cone-beam computed tomography (CBCT) scans of 250 patients. The proposed system identifies the landmark locations very accurately even when there are severe pathologies or deformations in the bones. The proposed RRN has also revealed unique relationships among the landmarks that help us infer several reasoning about informativeness of the landmark points. RRN is invariant to order of landmarks and it allowed us to discover the optimal configurations (number and location) for landmarks to be localized within the object of interest (mandible) or nearby objects (maxilla and nasal). To the best of our knowledge, this is the first of its kind algorithm finding anatomical relations of the objects using deep learning.Comment: 10 pages, 6 Figures, 3 Table

    Density determinations in heavy ion collisions

    Get PDF
    The experimental determination of freeze-out temperatures and densities from the yields of light elements emitted in heavy ion collisions is discussed. Results from different experimental approaches are compared with those of model calculations carried out with and without the inclusion of medium effects. Medium effects become of relevance for baryon densities above ≈5×10−4\approx 5 \times 10^{-4} fm−3^{-3}. A quantum statistical (QS) model incorporating medium effects is in good agreement with the experimentally derived results at higher densities. A densitometer based on calculated chemical equilibrium constants is proposed.Comment: 5 pages, 3 figure

    End-user feature labeling: a locally-weighted regression approach

    Get PDF
    When intelligent interfaces, such as intelligent desktop assistants, email classifiers, and recommender systems, customize themselves to a particular end user, such customizations can decrease productivity and increase frustration due to inaccurate predictions - especially in early stages, when training data is limited. The end user can improve the learning algorithm by tediously labeling a substantial amount of additional training data, but this takes time and is too ad hoc to target a particular area of inaccuracy. To solve this problem, we propose a new learning algorithm based on locally weighted regression for feature labeling by end users, enabling them to point out which features are important for a class, rather than provide new training instances. In our user study, the first allowing ordinary end users to freely choose features to label directly from text documents, our algorithm was both more effective than others at leveraging end users' feature labels to improve the learning algorithm, and more robust to real users' noisy feature labels. These results strongly suggest that allowing users to freely choose features to label is a promising method for allowing end users to improve learning algorithms effectively

    End-User Feature Labeling via Locally Weighted Logistic Regression

    Get PDF
    Applications that adapt to a particular end user often make inaccurate predictions during the early stages when training data is limited. Although an end user can improve the learning algorithm by labeling more training data, this process is time consuming and too ad hoc to target a particular area of inaccuracy. To solve this problem, we propose a new learning algorithm based on Locally Weighted Logistic Regression for feature labeling by end users, enabling them to point out which features are important for a class, rather than provide new training instances. In our user study, the first allowing ordinary end users to freely choose features to label directly from text documents, our algorithm was more effective than others at leveraging end users’ feature labels to improve the learning algorithm. Our results strongly suggest that allowing users to freely choose features to label is a promising method for allowing end users to improve learning algorithms effectively

    Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs

    Get PDF
    A compact, narrow-linewidth, tunable source of THz radiation has been developed for spectroscopy and other high-resolution applications. Distributed-Bragg-reflector (DBR) diode lasers at 850 nm are used to pump a low-temperature-grown GaAs photomixer. Resonant optical feedback is employed to stabilize the center frequencies and narrow the linewidths of the DBR lasers. The heterodyne linewidth full-width at half-maximum of two optically locked DBR lasers is 50 kHz on the 20 ms time scale and 2 MHz over 10 s; free-running DBR lasers have linewidths of 40 and 90 MHz on such time scales. This instrument has been used to obtain rotational spectra of acetonitrile (CH3CN) at 313 GHz. Detection limits of 1 × 10^–4 Hz^1/2 (noise/total power) have been achieved, with the noise floor dominated by the detector's noise equivalent power

    Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions

    Full text link
    A simple and commonly employed approximate technique with which one can examine spatially disordered systems when strong electronic correlations are present is based on the use of real-space unrestricted self-consistent Hartree-Fock wave functions. In such an approach the disorder is treated exactly while the correlations are treated approximately. In this report we critique the success of this approximation by making comparisons between such solutions and the exact wave functions for the Anderson-Hubbard model. Due to the sizes of the complete Hilbert spaces for these problems, the comparisons are restricted to small one-dimensional chains, up to ten sites, and a 4x4 two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about 63,500 and 166 million states, respectively. We have completed these calculations both at and away from 1/2 filling. This approximation is based on a variational approach which minimizes the Hartree-Fock energy, and we have completed comparisons of the exact and Hartree-Fock energies. However, in order to assess the success of this approximation in reproducing ground-state correlations we have completed comparisons of the local charge and spin correlations, including the calculation of the overlap of the Hartree-Fock wave functions with those of the exact solutions. We find that this approximation reproduces the local charge densities to quite a high accuracy, but that the local spin correlations, as represented by , are not as well represented. In addition to these comparisons, we discuss the properties of the spin degrees of freedom in the HF approximation, and where in the disorder-interaction phase diagram such physics may be important

    Evolution of optically faint AGN from COMBO-17 and GEMS

    Full text link
    We have mapped the AGN luminosity function and its evolution between z=1 and z=5 down to apparent magnitudes of R<24R<24. Within the GEMS project we have analysed HST-ACS images of many AGN in the Extended Chandra Deep Field South, enabling us to assess the evolution of AGN host galaxy properties with cosmic time.Comment: to appear in proceedings 'Multiwavelength AGN Surveys', Cozumel 200
    • 

    corecore