469 research outputs found
Estimating monthly-averaged air-sea transfers of heat and momentum using the bulk aerodynamic method
Air-sea transfers of sensible heat, latent heat, and momentum are computed from twenty-five years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that monthly-averaged wind speeds, temperatures, and humidities can be used to estimate the monthly-averaged sensible and latent heat fluxes computed from the bulk aerodynamic equations to within a relative error of approximately 10%. The estimate of monthly-averaged wind stress under the assumption of neutral stability are shown to be within approximately 5% of the monthly-averaged non-neutral values
Analysis of the surface heat balance over the world ocean
It is possible to estimate long term monthly mean latent and sensible heat fluxes over the ocean to within or approximately 20% relative accuracy of the bulk aerodynamic formulas, by using observations of the monthly mean surface wind speed and the monthly mean sea air temperature and humidity differences. It is possible to make an estimate of the fluxes on a month to month basis from monthly averaged surface data
Coulomb excitation at intermediate energies
Straight line trajectories are commonly used in semi-classical calculations
of the first-order Coulomb excitation cross section at intermediate energies,
and simple corrections are often made for the distortion of the trajectories
that is caused by the Coulomb field. These approximations are tested by
comparing to numerical calculations that use exact Coulomb trajectories. In
this paper a model is devised for including relativistic effects in the
calculations. It converges at high energies towards the relativistic
straight-line trajectory approximation and approaches the non-relativistic
Coulomb trajectory calculation at low energies. The model is tested against a
number of measurements and analyses that have been performed at beam energies
between 30 and 70 MeV/nucleon, primarily of quadrupole excitations. Remarkably
good agreement is achieved with the previous analyses, and good agreement is
also achieved in the few cases, where the B(E) value is known from
other methods. The magnitudes of the relativistic and Coulomb distortion
effects are discussed
3-D unrestricted TDHF fusion calculations using the full Skyrme interaction
We present a study of fusion cross sections using a new generation
Time-Dependent Hartree-Fock (TDHF) code which contains no approximations
regarding collision geometry and uses the full Skyrme interaction, including
all of the time-odd terms. In addition, the code uses the Basis-Spline
collocation method for improved numerical accuracy. A comparative study of
fusion cross sections for is made with the older TDHF
results and experiments. We present results using the modern Skyrme forces and
discuss the influence of the new terms present in the interaction.Comment: 7 pages, 10 figure
Many-body approach to the nonlinear interaction of charged particles with an interacting free electron gas
We report various many-body theoretical approaches to the nonlinear decay
rate and energy loss of charged particles moving in an interacting free
electron gas. These include perturbative formulations of the scattering matrix,
the self-energy, and the induced electron density. Explicit expressions for
these quantities are obtained, with inclusion of exchange and correlation
effects.Comment: 11 pages, 5 figures. To appear in Journal of Physics
Region of hadron-quark mixed phase in hybrid stars
Hadron--quark mixed phase is expected in a wide region of the inner structure
of hybrid stars. However, we show that the hadron--quark mixed phase should be
restricted to a narrower region to because of the charge screening effect. The
narrow region of the mixed phase seems to explain physical phenomena of neutron
stars such as the strong magnetic field and glitch phenomena, and it would give
a new cooling curve for the neutron star.Comment: to be published in Physical Review
Coulomb and nuclear breakup of B
The cross sections for the (B,Be-) breakup reaction on Ni
and Pb targets at the beam energies of 25.8 MeV and 415 MeV have been
calculated within a one-step prior-form distorted-wave Born approximation. The
relative contributions of Coulomb and nuclear breakup of dipole and quadrupole
multipolarities as well as their interference have been determined. The nuclear
breakup contributions are found to be substantial in the angular distributions
of the Be fragment for angles in the range of 30 - 80 at
25.8 MeV beam energy. The Coulomb-nuclear interference terms make the dipole
cross section larger than that of quadrupole even at this low beam energy.
However, at the incident energy of 415 MeV, these effects are almost negligible
in the angular distributions of the (Be-p) coincidence cross sections at
angles below 4.Comment: Revised version, accepted for publication in Phys. Rev.
Decay Rate of Triaxially-Deformed Proton Emitters
The decay rate of a triaxially-deformed proton emitter is calculated in a
particle-rotor model, which is based on a deformed Woods-Saxon potential and
includes a deformed spin-orbit interaction. The wave function of the
ground state of the deformed proton emitter Ho is obtained
in the adiabatic limit, and a Green's function technique is used to calculate
the decay rate and branching ratio to the first excited 2 state of the
daughter nucleus. Only for values of the triaxial angle
is good agreement obtained for both the total decay rate and the 2
branching ratio.Comment: 19 pages, 4 figure
Coulomb Breakup Mechanism of Neutron-Halo Nuclei in a Time-Dependent Method
The mechanism of the Coulomb breakup reactions of the nuclei with
neutron-halo structure is investigated in detail. A time-dependent
Schr\"odinger equation for the halo neutron is numerically solved by treating
the Coulomb field of a target as an external field. The momentum distribution
and the post-acceleration effect of the final fragments are discussed in a
fully quantum mechanical way to clarify the limitation of the intuitive picture
based on the classical mechanics. The theory is applied to the Coulomb breakup
reaction of Be + Pb. The breakup mechanism is found to be
different between the channels of and
, reflecting the underlying structure of Be. The
calculated result reproduces the energy spectrum of the breakup fragments
reasonably well, but explains only about a half of the observed longitudinal
momentum difference.Comment: 15 pages,revtex, 9 figures (available upon request
- …