32,097 research outputs found

    Characterization of Jets in Relativistic Heavy Ion Collisions

    Full text link
    Jet quenching is considered to be one of the signatures of the formation of quark gluon plasma. In order to investigate the jet quenching, it is necessary to detect jets produced in relativistic heavy ion collisions, determine their properties and compare those with the jets one obtains in hadron-hadron or e+−e−e^+-e^- collisions. In this work, we propose that calculation of flow parameters may be used to detect and characterize jets in relativistic heavy ion collisions.Comment: 18 pages, 4 figures, more discussions are added, to be published in Phys. Rev.

    Large Deviation Principles and Complete Equivalence and Nonequivalence Results for Pure and Mixed Ensembles

    Get PDF
    We consider a general class of statistical mechanical models of coherent structures in turbulence, which includes models of two-dimensional fluid motion, quasi-geostrophic flows, and dispersive waves. First, large deviation principles are proved for the canonical ensemble and the microcanonical ensemble. For each ensemble the set of equilibrium macrostates is defined as the set on which the corresponding rate function attains its minimum of 0. We then present complete equivalence and nonequivalence results at the level of equilibrium macrostates for the two ensembles.Comment: 57 page

    The Large Deviation Principle for Coarse-Grained Processes

    Full text link
    The large deviation principle is proved for a class of L2L^2-valued processes that arise from the coarse-graining of a random field. Coarse-grained processes of this kind form the basis of the analysis of local mean-field models in statistical mechanics by exploiting the long-range nature of the interaction function defining such models. In particular, the large deviation principle is used in a companion paper to derive the variational principles that characterize equilibrium macrostates in statistical models of two-dimensional and quasi-geostrophic turbulence. Such macrostates correspond to large-scale, long-lived flow structures, the description of which is the goal of the statistical equilibrium theory of turbulence. The large deviation bounds for the coarse-grained process under consideration are shown to hold with respect to the strong L2L^2 topology, while the associated rate function is proved to have compact level sets with respect to the weak topology. This compactness property is nevertheless sufficient to establish the existence of equilibrium macrostates for both the microcanonical and canonical ensembles.Comment: 19 page

    The Mass Assembly Histories of Galaxies of Various Morphologies in the GOODS Fields

    Full text link
    We present an analysis of the growth of stellar mass with cosmic time partitioned according to galaxy morphology. Using a well-defined catalog of 2150 galaxies based, in part, on archival data in the GOODS fields, we assign morphological types in three broad classes (Ellipticals, Spirals, Peculiar/Irregulars) to a limit of z_AB=22.5 and make the resulting catalog publicly available. We combine redshift information, optical photometry from the GOODS catalog and deep K-band imaging to assign stellar masses. We find little evolution in the form of the galaxy stellar mass function from z~1 to z=0, especially at the high mass end where our results are most robust. Although the population of massive galaxies is relatively well established at z~1, its morphological mix continues to change, with an increasing proportion of early-type galaxies at later times. By constructing type-dependent stellar mass functions, we show that in each of three redshift intervals, E/S0's dominate the higher mass population, while spirals are favored at lower masses. This transition occurs at a stellar mass of 2--3 times 10^{10} Msun at z~0.3 (similar to local studies) but there is evidence that the relevant mass scale moves to higher mass at earlier epochs. Such evolution may represent the morphological extension of the ``downsizing'' phenomenon, in which the most massive galaxies stop forming stars first, with lower mass galaxies becoming quiescent later. We infer that more massive galaxies evolve into spheroidal systems at earlier times, and that this morphological transformation may only be completed 1--2 Gyr after the galaxies emerge from their active star forming phase. We discuss several lines of evidence suggesting that merging may play a key role in generating this pattern of evolution.Comment: 24 pages, 1 table, 8 figures, accepted for publication in Ap

    Production of a Z boson and two jets with one heavy-quark tag

    Get PDF
    We present a next-to-leading-order calculation of the production of a Z boson with two jets, one or more of which contains a heavy quark (Q=c,b). We show that the cross section with only one heavy-quark jet is larger than that with two heavy-quark jets at both the Fermilab Tevatron and the CERN LHC. These processes are the dominant irreducible backgrounds to a Higgs boson produced in association with a Z boson, followed by h->bb. Our calculation makes use of a heavy-quark distribution function, which resums collinear logarithms and makes the next-to-leading-order calculation tractable.Comment: 11 pages, 5 figures. Erratum adde

    Physics at Future Linear Colliders

    Full text link
    This article summarises the physics at future linear colliders. It will be shown that in all studied physics scenarios a 1 TeV linear collider in addition to the LHC will enhance our knowledge significantly and helps to reconstruct the model of new physics nature has chosen.Comment: Invited talk at the Lepton Photon Symposium 2005, Upsala, Sweden, July 2005, V2: minor improvement

    Magneto-optical determination of the electron-solid phase-boundary

    Get PDF
    We have obtained a two-dimensional electron-solid phase diagram in the extreme magnetic quantum limit by studying the temperature dependence of the radiative recombination of electrons in a GaAs/AlxGa1-xAs heterojunction with holes bound to a delta-layer, 250 A away in the GaAs, of Be acceptors. The low-energy shoulder to the luminescence line, indicating the presence of the electron solid, is seen to disappear at a filling-factor-dependent critical temperature. We observe no shoulder above a filling factor of 0.25, and the critical temperature falls to below 0.4 K at filling factors 1/5 and 1/7
    • 

    corecore