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Abstract

We consider a general class of statistical mechanical models of coherent struc-
tures in turbulence, which includes models of two-dimensional fluid motion, quasi-
geostrophic flows, and dispersive waves. First, large deviation principles are proved
for the canonical ensemble and the microcanonical ensemble. For each ensemble
the set of equilibrium macrostates is defined as the set on which the corresponding
rate function attains its minimum of 0. We then present complete equivalence and
nonequivalence results at the level of equilibrium macrostates for the two ensembles.

Microcanonical equilibrium macrostates are characterized as the solutions of a
certain constrained minimization problem, while canonical equilibrium macrostates
are characterized as the solutions of an unconstrained minimization problem in
which the constraint in the first problem is replaced by a Lagrange multiplier. The
analysis of equivalence and nonequivalence of ensembles reduces to the following
question in global optimization. What are the relationships between the set of
solutions of the constrained minimization problem that characterizes microcanonical
equilibrium macrostates and the set of solutions of the unconstrained minimization
problem that characterizes canonical equilibrium macrostates?

In general terms, our main result is that a necessary and sufficient condition for
equivalence of ensembles to hold at the level of equilibrium macrostates is that it
holds at the level of thermodynamic functions, which is the case if and only if the
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microcanonical entropy is concave. The necessity of this condition is new and has
the following striking formulation. If the microcanonical entropy is not concave at
some value of its argument, then the ensembles are nonequivalent in the sense that
the corresponding set of microcanonical equilibrium macrostates is disjoint from
any set of canonical equilibrium macrostates. We point out a number of models of
physical interest in which nonconcave microcanonical entropies arise.

We also introduce a new class of ensembles called mixed ensembles, obtained by
treating a subset of the dynamical invariants canonically and the complementary
set microcanonically. Such ensembles arise naturally in applications where there
are several independent dynamical invariants, including models of dispersive waves
for the nonlinear Schrödinger equation. Complete equivalence and nonequivalence
results are presented at the level of equilibrium macrostates for the pure canonical,
the pure microcanonical, and the mixed ensembles.
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Key words and phrases: Large deviation principle, equilibrium macrostates, equivalence
of ensembles, microcanonical entropy
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1 Introduction

1.1 Overview

A wide variety of complex physical systems described by nonlinear partial differential
equations exhibit asymptotic phenomena that are much too complicated to study by
purely analytic methods. In order to gain a fuller understanding of such phenomena, ana-
lytic methods are supplemented by numerical simulations or the systems are modeled via
the formalism of statistical mechanics, which often yields uncannily accurate predictions
concerning the system’s asymptotic behavior.

An important class of complex physical systems for which the formalism of statis-
tical mechanics provides accurate predictions arises in the study of turbulence; e.g.,
two-dimensional fluid motions, quasi-geostrophic flows, two-dimensional magnetofluids,
plasmas, and dispersive waves. In each case important features of the asymptotic behav-
ior of the underlying nonlinear partial differential equation—the two-dimensional Euler
equations, the quasi-geostrophic potential vorticity equation, the magnetohydrodynamic
equations, the Vlasov-Poisson equation, and the nonlinear Schrödinger equation—can be
effectively captured in a statistical mechanical model. A distinguishing feature of such sys-
tems is that a free evolution from a generic initial condition exhibits a separation-of-scales
behavior: coherent structures are formed on large scales—e.g., vortices and shears in the
case of fluid motion or solitons in the case of dispersive waves—while random fluctuations
are generated on small scales. A major goal of any description of the system, whether
analytic, numeric, or statistical, is to predict the formation, interaction, and persistence
of such coherent structures.

The purpose of the present paper is to provide the theoretical basis for statistical
mechanical studies of specific models of turbulence that are analyzed elsewhere. These
include two-dimensional fluids [6], quasi-geostrophic flows [16], and dispersive waves [17].
In each case the model is defined on a fixed flow domain in terms of a sequence of finite-
dimensional systems indexed by n ∈ IN . Coherent structures are studied in the continuum
limit, obtained by sending n → ∞. They are characterized by variational principles, the
solutions of which define equilibrium macrostates. In contrast to the detailed descrip-
tion required by the associated nonlinear partial differential equation and by the finite-
dimensional systems that discretize them, these equilibrium macrostates provide a vastly
contracted description. The variational principles are derived and analyzed via the theory
of large deviations and duality theory for concave functions.

In these models the sequence of finite-dimensional systems is defined on a fixed domain
in terms of a long-range interaction with a local mean-field scaling. In order to obtain
a nontrivial limit, one must scale the inverse temperature by a parameter tending to
infinity. By altering the scaling and making other superficial changes, our results can
also be applied to classical lattice models such as the Ising model of a ferromagnet. Such
models are typically defined in terms of the thermodynamic limit of a sequence of finite-
dimensional systems having a finite-range or summable interaction. In such applications
a basic stochastic process that arises in the large deviation analysis is the empirical field,
which has been studied by a number of authors including [12, 20, 21, 40]. Other papers
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that investigate the equivalence of ensembles in the traditional thermodynamic or bulk
limit include [1] and [47].

There is a large literature on the equivalence of ensembles for classical lattice systems
and related models. It is reviewed in part in the introduction to [33], to which the reader
is referred for references. In particular, a number of papers including [12, 21, 32, 46]
investigate the equivalence of ensembles using the theory of large deviations. Of these
papers, [32] considers the problem in the greatest generality, obtaining a criterion for
the equivalence of ensembles in terms of the vanishing of the specific information gain
of a sequence of conditioned measures with respect to a sequence of tilted measures.
However, despite the mathematical sophistication of these and other studies, none of them
explicitly addresses the general issue of the nonequivalence of ensembles, which seems to
be the typical behavior for the models of turbulence that the present paper analyzes. In
[32, §7.3] and [33, §7] there is a discussion of the nonequivalence of ensembles for the
simplest mean-field model in statistical mechanics; namely, the Curie-Weiss model of a
ferromagnet. For a general class of local mean-field models of turbulence, the present
paper addresses this and related issues.

In much of the classical literature on statistical mechanical approaches to two-dimensional
turbulence, it is tacitly assumed that the microcanonical and canonical ensembles give
equivalent results [30, 39]. Recently, however, in the context of the point vortex and
related models, this tacit assumption has been directly addressed. Questions concerning
the equivalence and nonequivalence of ensembles for these models have been investigated
by a number of authors, including [9, 19, 26, 28]. The present paper, inspired in part by
[19], is the first to present complete and definitive results for a general class of models,
with a particular emphasis upon the nonequivalence of ensembles.

An unexpected connection of our work in this paper is to dynamic stability analysis.
To date, all studies of the nonlinear stability of two-dimensional flows have been carried
out using the Lyapunov functionals introduced by Arnold [2, 3, 35]. When these deter-
ministic results are reformulated in the setting of statistical mechanical models, they can
be expressed in terms of the second-order conditions satisfied by canonical equilibrium
macrostates. In the cases when the microcanonical entropy is not concave and thus the en-
sembles are nonequivalent, the Arnold sufficient conditions for nonlinear stability are not
satisfied by the microcanonical equilibrium macrostates. Nevertheless, the second-order
conditions satisfied by these macrostates allow us to refine the classical Arnold theorems
by proving the nonlinear stability of a new class of two-dimensional flows. In [16] these
ideas are developed for the quasi-geostrophic potential vorticity equation, which describes
the dynamics of rotating, shallow water systems in nearly geostrophic balance. The work
in that paper has possible applications to the stability of planetary flows; specifically, to
the stability of zonal shear flows and embedded vortices in Jovian-type atmospheres.

In the next two subsections we present an overview of the main results in this paper,
stripped of all technicalities. This is done in the context of a well-known statistical me-
chanical model of the two-dimensional Euler equations known as the Miller-Robert model.
Results formulated in great generality to apply to this and other models of turbulence are
given in Sections 2-5 of this paper. We start by presenting large deviation principles with
respect to the canonical ensemble and the microcanonical ensemble. For each ensemble
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we then define the set of equilibrium macrostates as the set on which the associated rate
function attains its minimum of 0. A fundamental question arises. Are the two ensem-
bles equivalent at the level of equilibrium macrostates? That is, does each equilibrium
macrostate with respect to one ensemble correspond to an equilibrium macrostate with
respect to the other ensemble? In Section 4, definitive and sharp results on the equivalence
and nonequivalence of the ensembles are presented.

In general terms, our main result is that a necessary and sufficient condition for the
equivalence of ensembles to hold at the level of equilibrium macrostates is that it holds
at the level of thermodynamic functions. In proving this, we go beyond the important
work in [32], which proves that for a general class of models including the classical lat-
tice gas thermodynamic equivalence of ensembles is a sufficient condition for macrostate
equivalence of ensembles. Our proof that thermodynamic equivalence is also a necessary
condition for macrostate equivalence is perhaps the most striking discovery of our work.
Specifically, we show that whenever a quantity known as the microcanonical entropy is not
concave, the ensembles are nonequivalent in the sense that the set of microcanonical equi-
librium macrostates is richer than the set of canonical equilibrium macrostates. In fact,
the latter set contains none of the microcanonical equilibrium macrostates corresponding
to nonconcave portions of the entropy [see Thm. 4.5(b)]. Useful, but less concrete, con-
nections between the nonconcavity of the microcanonical entropy and nonequivalence of
ensembles can also be deduced from the abstract results in [32] [see their §5 and §6]. On
the other hand, our results are formulated in order to apply directly to statistical me-
chanical models of turbulence for which nonconcave microcanonical entropies frequently
and naturally arise, particularly in physically interesting regions corresponding to a range
of negative temperatures. Several such examples are mentioned in Section 1.4.

Besides the results on equivalence and nonequivalence of ensembles, we also prove that
for the Miller-Robert model and other models microcanonical equilibrium macrostates
have an equivalent characterization in terms of constrained maximum entropy principles
(see Remark 3.4). Our approach to this question seems simpler and more intuitive than
the approach taken in [37, 42, 43]. The derivation of constrained maximum entropy
principles based on the microcanonical ensemble brings to fruition the work begun in
[6], where unconstrained maximum entropy principles based on the canonical ensemble
are derived. Our proof that microcanonical equilibrium macrostates are characterized as
solutions of constrained maximum entropy principles is an important contribution because
such principles are the basis for numerical computations of equilibrium macrostates and
coherent structures for the Miller-Robert model and other models [14, 51, 52].

In systems having multiple conserved quantities, one also has the option of studying
mixed ensembles. These are defined by treating a subset of the conserved quantities
canonically and the complementary subset of conserved quantities microcanonically. In
Section 5 we derive large deviation principles with respect to such ensembles and give
complete results on their equivalence and nonequivalence, at the level of equilibrium
macrostates, with the microcanonical ensemble and the canonical ensemble. Although
mixed ensembles arise naturally in a number of applications, they have not been studied
in a general setting in the statistical mechanical literature.

An important application of mixed ensembles is to the study of dispersive waves and

5



soliton turbulence for the nonlinear Schrödinger equation [17]. This equation has two con-
served quantities, the Hamiltonian and the particle number. In the associated statistical
mechanical model, the canonical ensemble cannot be defined because the partition func-
tion does not converge. Instead, one must consider either a microcanonical ensemble or a
mixed ensemble in which the Hamiltonian is treated canonically and the particle number
microcanonically. By applying to the mixed ensemble a large deviation result for Gaussian
processes derived in [18], in [17] we are able to justify rigorously a mean-field theoretic
approach to soliton turbulence presented in [24]. The agreement between the predictions
of the statistical mechanical model and long-time simulations of the microscopic dynamics
is excellent [23].

1.2 Ensembles and Large Deviation Principles

The Euler equations describe the time evolution of the velocity field of an inviscid, in-
compressible fluid in a spatial domain, which for simplicity we take to be the unit torus
T 2 with periodic boundary conditions. At time t > 0 the velocity field at a position
x = (x1, x2) ∈ T 2 is denoted (v1(x, t), v2(x, t)). The Euler equations can be cast in the form
of an infinite-dimensional Hamiltonian system having a family of other conserved quanti-
ties called generalized enstophies. A central goal of theoretical, numerical, and statistical
studies is to relate the asymptotic behavior of the vorticity ω(x, t)

.
= v2,x1

(x, t)−v1,x2
(x, t)

to the formation, interaction, and persistence of coherent structures of the fluid motion.
A model that can be used to carry this out was proposed independently by Miller et.

al. [38, 39] and Robert et. al. [43, 44] and is known as the Miller-Robert model. In order to
define it, one first discretizes the continuum dynamics described by the Euler equations,
and then in terms of the discretized dynamics one defines a sequence of statistical equilib-
rium models on suitable finite lattices Ln of T 2. Details are given in part (b) of Example
2.3. These lattice models describe the joint probability distributions of certain vorticity
random variables ζ(s) defined for each site s ∈ Ln. We denote by ζ the configuration or
microstate {ζ(s), s ∈ Ln}; by an the number of sites in Ln; by Y the common range of
ζ(s); by Hn(ζ) the Hamiltonian for ζ , which is a certain quadratic function of the ζ(s)
that approximates the continuum Hamiltonian; by An(ζ) the generalized enstrophy of ζ ,
which approximates the continuum generalized enstrophy; and by Pn the prior distribu-
tion of ζ , which is a certain product measure on the configuration space Yan . In order
to simplify the present description, we absorb An in Pn; in [16] a physical justification is
given, in the context of a related model, for absorbing the generalized enstrophy An in
the prior distribution Pn. Thus for the purpose of this introduction, the Miller-Robert
model is defined in terms of a single conserved quantity, the Hamiltonian. As in many
other models of turbulence, the Hamiltonian in the Miller-Robert model has a long-range
interaction and incorporates a local mean-field scaling.

For other models of turbulence having the Hamiltonian as the only conserved quantity,
much of the following discussion is valid with minimal changes in notation; in particular,
the forms of the large deviation principles in the present subsection and the results on
equivalence and nonequivalence of ensembles in the next subsection. For models having
multiple conserved quantities, the following discussion is easily adapted by replacing cer-
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tain scalars with vectors. The general class of models considered in this paper is defined
in terms of the quantities in Hypotheses 2.1. In order for a large deviation analysis of the
model to be feasible, these quantities must satisfy Hypotheses 2.2.

We begin our overview of the main results in this paper by appealing to the formalism
of equilibrium statistical mechanics, which provides two joint probability distributions
for microstates ζ ∈ Yan . The physically fundamental distribution known as the mi-
crocanonical ensemble models the fact that the Hamiltonian is a constant of the Euler
dynamics. Probabilistically, this is expressed by conditioning Pn on the energy shell
{ζ ∈ Yan :Hn(ζ) = u}, where u ∈ IR is determined by the initial conditions. However, in
order to avoid problems with the existence of regular conditional probability distributions,
we shall condition Pn on the thickened energy shell {Hn(ζ) ∈ [u− r, u+ r]}, where r > 0.
Thus, the microcanonical ensemble is the measure defined for Borel subsets B of Yan by

P u,r
n {B} = Pn{B |Hn ∈ [u− r, u+ r]} =

Pn{B ∩ {Hn ∈ [u− r, u+ r]}}

Pn{Hn ∈ [u− r, u+ r]}
;

this is well defined provided the denominator in the last expression is positive. The letter
u is used in the definition of the microcanonical ensemble rather than the more usual letter
E because this is a special case of a general theory that applies to models having multiple
conserved quantities; for such models u ∈ IR is replaced by a vector u representing a fixed
value of the vector of conserved quantities.

A mathematically more tractable joint probability distribution is the canonical ensem-
ble, defined for Borel subsets B of Yan by

Pn,β{B}
.
=

1

Z(n, β)
·

∫

B

exp[−βHn] dPn.

Here β is a real number denoting the inverse temperature and Z(n, β) is the partition func-
tion

∫

Yan
exp[−βHn] dPn. This is a normalization constant that makes Pn,β a probability

measure.
The main mathematical tool that we shall use to predict the formation of coherent

structures is the theory of large deviations. In the case of the Miller-Robert model, a
crucial innovation implemented in [6] for the canonical ensemble is to study the asymptotic
behavior of a random probability measure Yn(ζ) that is closely related to a certain coarse
graining of the random vorticity field (see part (b) of Example 2.3). This coarse graining
is defined in terms of the empirical measures of ζ(s) for s in certain macrocells of the
lattice Ln. Yn takes values in a certain subset X of the space of probability measures
on T 2 × Y . Elements µ of X are called macrostates. While Yn is basic to analyzing the
asymptotic behavior of the model, its definition is far from obvious. For that reason we
call Yn a hidden process and X a hidden space for the Miller-Robert model.

The hidden process Yn has two properties that make a large deviation analysis of
the Miller-Robert model possible. For details, the reader is referred to [6]. First, an
application of Sanov’s Theorem shows that with respect to the a priori distribution Pn,
Yn satisfies the large deviation principle on X with rate function I(µ) given by the relative
entropy of µ ∈ X with respect to a certain base measure. We record this fact by the formal
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notation
Pn{Yn ∈ B(µ, α)} ≈ exp[−anI(µ)] as n→ ∞, α→ 0. (1.2.1)

In this formula B(µ, α) denotes the open ball with center µ and radius α with respect
to an appropriate metric on X . Second, there exists a bounded continuous function H̃
mapping X into IR with the property that uniformly over microstates the Hamiltonian
Hn(ζ) is asymptotic to H̃(Yn(ζ)) as n→ ∞; in symbols,

lim
n→∞

sup
ζ∈Yan

|Hn(ζ) − H̃(Yn(ζ))| = 0. (1.2.2)

H̃ is called the Hamiltonian representation function.
Using (1.2.2), one derives from the large deviation principle for the Pn-distributions

of Yn the asymptotic behavior of Yn with respect to the two ensembles P u,r
n and Pn,anβ.

For appropriate values of u and β these are expressed by the formal notation

P u,r
n {Yn ∈ B(µ, α)} ≈ exp[−anI

u(µ)] as n→ ∞, r → 0, α→ 0 (1.2.3)

and
Pn,anβ{Yn ∈ B(µ, α)} ≈ exp[−anIβ(µ)] as n→ ∞, α→ 0. (1.2.4)

In these formulas Iu and Iβ are rate functions that map X into [0,∞] and are defined
in terms of the relative entropy I appearing in (1.2.1). Because the Miller-Robert model
is defined in terms of a long-range interaction having a local mean-field scaling, in order
to obtain a nontrivial asymptotic theory β must be scaled by an in the definition of the
canonical ensemble Pn,β [6, §3]. For the general formulation of (1.2.3) and (1.2.4) as large
deviation principles for a general class of models, the reader is referred to Theorem 3.2
and Theorem 2.4, respectively.

It is not difficult to motivate the forms of Iu and Iβ. In order to do so, we introduce two
basic thermodynamic functions, one associated with each ensemble. Since the ground-
breaking work of Lanford on equilibrium macrostates in classical statistical mechanics
[31], it has been recognized that the basic thermodynamic function associated with the
microcanonical ensemble is the microcanonical entropy s. In terms of the distribution
Pn{Hn ∈ ·}, this quantity measures the multiplicity of microstates ζ ∈ Yan consistent
with a given energy value u. It is defined by

s(u)
.
= lim

r→0
lim
n→∞

1

an
logPn{Hn ∈ [u− r, u+ r]}. (1.2.5)

For appropriate values of u, the limit exists and is given by (3.2), which is a variational
formula over macrostates µ. For β ∈ IR the basic thermodynamic function associated
with the canonical ensemble is the canonical free energy

ϕ(β)
.
= − lim

n→∞

1

an
logZ(n, anβ). (1.2.6)

The limit exists and is given by (2.6), which is also a variational formula over macrostates.
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We first motivate the form of Iβ. If Yn ∈ B(µ, α), then for all sufficiently small α and
all sufficiently large n (1.2.2) implies that

Hn(ζ) ≈ H̃(Yn(ζ)) ≈ H̃(µ).

Hence for all sufficiently small α and all sufficiently large n, the asymptotic formula (1.2.1)
and the definition of ϕ yield

Pn,anβ{Yn ∈ B(µ, α)}
.
=

1

Z(n, β)

∫

{Yn∈B(µ,α)}

exp[−anβHn] dPn

≈
1

Z(n, β)
exp[−anβH̃(µ)]Pn{Yn ∈ B(µ, α)}

≈ exp[−an(I(µ) + βH̃(µ) − ϕ(β))].

Comparing this with the desired asymptotic form (1.2.4) motivates the formula

Iβ(µ) = I(µ) + βH̃(µ) − ϕ(β). (1.2.7)

The actual proof of the large deviation principle for the Pn,anβ-distributions of Yn with
this rate function follows the sketch presented here and is not difficult. Related large
deviation principles have been obtained by numerous authors.

We now motivate the form of Iu. Suppose that H̃(µ) = u. Then for all sufficiently
large n depending on r the set of ζ for which both Yn(ζ) ∈ B(µ, α) andHn(ζ) ∈ [u−r, u+r]
is approximately equal to the set of ζ for which both Yn(ζ) ∈ B(µ, α) and H̃(Yn(ζ)) ∈
[u− r, u+ r]. Since H̃ is continuous and H̃(µ) = u, for all sufficiently small α compared
to r this set reduces to {ζ : Yn(ζ) ∈ B(µ, α)}. Hence for all sufficiently small r, all
sufficiently large n depending on r, and all sufficiently small α compared to r, (1.2.1) and
the definition (1.2.5) of s yield

P u,r
n {Yn ∈ B(µ, α)}

.
=

Pn{{Yn ∈ B(µ, α)} ∩ {Hn ∈ [u− r, u+ r]}}

Pn{Hn ∈ [u− r, u+ r]}

≈
Pn{Yn ∈ B(µ, α)}

Pn{Hn ∈ [u− r, u+ r]}

≈ exp[−an(I(µ) + s(u))].

On the other hand, if H̃(µ) 6= u, then a similar calculation shows that for all sufficiently
small r, all sufficiently small α, and all sufficiently large n P u,r

n {Yn ∈ B(µ, α)} = 0. Com-
paring these approximate calculations with the desired asymptotic form (1.2.3) motivates
the formula

Iu(µ)
.
=

{

I(µ) + s(u) if H̃(µ) = u,

∞ if H̃(µ) 6= u.
(1.2.8)

In Section 3 we offer two proofs of the large deviation principle for the P u,r
n -distributions

of Yn. Both are straightforward; the first follows fairly closely the heuristic sketch just
given. Forms of this large deviation principle are given, for example, in [12, 32, 33].
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The asymptotic formulas (1.2.3) and (1.2.4) give rise to several interpretations of the
rate functions. Through the distributions P u,r

n {Yn ∈ ·} and Pn,anβ{Yn ∈ ·}, Iu and Iβ
measure the multiplicity of microstates ζ ∈ Yan consistent with a given macrostate µ.
Because of these asymptotic formulas, it also makes sense to say that for i = Iu or i = Iβ
a macrostate µ1 ∈ X is more predictable than a macrostate µ2 ∈ X if i(µ1) < i(µ2). Since
i is nonnegative, the most predictable or most probable macrostates µ solve i(µ) = 0. It is
natural to call such µ equilibrium macrostates. Specifically, µ ∈ X satisfying Iu(µ) = 0 is
called a microcanonical equilibrium macrostate; Eu denotes the set of all such macrostates.
Analogously, a measure µ ∈ X satisfying Iβ(µ) = 0 is called a canonical equilibrium
macrostate; Eβ denotes the set of all such macrostates. In terms of equilibrium macrostates
µ, one can analyze the formation of coherent structures by defining the mean vorticity
as an appropriate average of µ and comparing it, say by simulation, with the long-time
behavior of the vorticity ω(x, t)

.
= v2,x1

(x, t) − v1,x2
(x, t) as given by the Euler equations

[39, 44, 51, 52].

1.3 Equivalence and Nonequivalence of Ensembles

The microcanonical ensemble is physically fundamental, and the canonical ensemble can
be heuristically derived from it by considering a small subsystem of a large reservoir
[4]. Aside from physical considerations concerning which ensemble is more appropriate
in the construction of a statistical model, the more mathematically tractable canonical
ensemble is often introduced as an approximation to the microcanonical ensemble, which
is somewhat difficult to analyze. However, in order to justify this use of the canonical
ensemble, one must address a basic issue. At the level of equilibrium macrostates, do
the two ensembles give equivalent results? This involves answering the following two
questions.

1. For every β and every µ in the set Eβ of canonical equilibrium macrostates, does
there exist a value of u such that µ lies in the set Eu of microcanonical equilibrium
macrostates?

2. Conversely, for every u and every µ ∈ Eu does there exist a value of β such that
µ ∈ Eβ?

Whether or not the answers are yes, a more refined issue is to determine the precise
relationships between Eu and Eβ. For example, if the answers are both yes, then given β
in question 1 (resp., u in question 2), how does one determine the corresponding value
of u (resp., β)? It is with these issues, appropriately formulated in terms of a general
class of models having multiple conserved quantities, that Sections 4 and 5 of the present
paper is occupied. In those sections definitive and sharp results on the equivalence and
nonequivalence of ensembles are derived.

As we will see, in general question 1 in the preceding paragraph has the answer yes;
namely, every µ ∈ Eβ lies in Eu for some value of u. As we illustrate by a number of
examples given in Section 1.4, question 2 can have the answer no; namely, it can be
the case that the set of microcanonical equilibrium macrostates is richer than the set
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of canonical equilibrium macrostates. As we show in Theorem 4.4, this behavior has a
striking formulation in terms of the microcanonical entropy s, which is defined in (1.2.5).
If s is not concave at a given value of u, then the ensembles are nonequivalent in the sense
that Eu is disjoint from the sets Eβ for all values of β.

This general result has been anticipated in a number of works, including those dis-
cussed in Section 4.2 of [49] and in [27, 29]. These works exhibit nonconcave entropy
curves for a number of physical models that include a gravitating system of fermions and
a system of circular vortex filaments in an ideal fluid confined to a three-dimensional
torus; see Fig. 34 in [49], Fig. 3 in [27], and Fig. 2 in [29]. They also point out that certain
equilibrium macrostates corresponding to nonconcave portions of the entropy are only
realizable in the continuum limit of the microcanonical ensemble but not of the canonical
ensemble. Other examples of nonconcave entropies are given in Section 1.4 of the present
paper.

The question as to whether the microcanonical and canonical ensembles give equiva-
lent results at the level of equilibrium macrostates is formulated as a problem in global
optimization. Let u and β be given. By definition, a macrostate µ̄ belongs to Eu if
and only if Iu(µ̄) = 0. This is the case if and only if µ̄ solves the following constrained
minimization problem:

minimize I(µ) over µ ∈ X subject to the constraint H̃(µ) = u; (1.3.1)

it is worth noting that since the relative entropy I(µ) equals negative the physical entropy,
this display defines a maximum entropy principle with the energy constraint H̃(µ) = u.
By definition, a macrostate µ̄ belongs to Eβ if and only if Iβ(µ̄) = 0. This is the case if
and only if µ̄ solves the following unconstrained minimization problem:

minimize (I(µ) + βH̃(µ)) over µ ∈ X . (1.3.2)

In the unconstrained problem β is a Lagrange multiplier dual to the constraint H̃(µ) = u
in (1.3.1). Under general conditions, solutions of the constrained minimization problem
(1.3.1) are extremal points of (I + βH̃) on X [22, 53]. The question as to whether the
microcanonical and canonical ensembles give equivalent results is equivalent to answering
the following refined question related to this property. What are the relationships between
the sets of solutions of the constrained and unconstrained minimization problems (1.3.1)
and (1.3.2)?

We now describe our results on the equivalence and nonequivalence of ensembles by
relating them to the behavior of the two basic thermodynamic functions, s and ϕ. The
following discussion applies to the Miller-Robert model as well as to a class of other models
that have the Hamiltonian as a single conserved quantity. The discussion generalizes to
a wide class of other models having multiple conserved quantities. We first motivate a
formula relating s and ϕ. To do this, we use the definition of s, which we summarize by
the formula

Pn{Hn ∈ du} ≈ exp[ans(u)] du.

We now calculate

ϕ(β) = − lim
n→∞

1

an
logZ(n, anβ)

11



= − lim
n→∞

1

an
log

∫

Yan

exp[−anβHn] dPn

= − lim
n→∞

1

an
log

∫

IR

exp[−anβu]Pn{Hn ∈ du}

≈ − lim
n→∞

1

an
log

∫

IR

exp[−an(βu− s(u))] du.

According to the heuristic reasoning that underlies Laplace’s method, the main contribu-
tion to the integral comes from the largest term. This motivates the relationship

ϕ(β) = inf
u∈IR

{βu− s(u)}, (1.3.3)

which expresses ϕ as the Legendre-Fenchel transform s∗ of s.
For the Miller-Robert model and other models of turbulence considered in this paper,

s is nonpositive and upper semicontinuous on IR [Prop. 3.1(a)]. If it is the case that s is
concave on IR, then (1.3.3) can be inverted to give s in terms of ϕ; namely, for all u ∈ IR

s(u) = inf
β∈IR

{βu− ϕ(β)}. (1.3.4)

Hence, when s is concave on IR, each basic thermodynamic function can be obtained from
the other by a similar formula. It is natural to say that in this case the microcanonical
ensemble and the canonical ensemble are thermodynamically equivalent [28, 33]. As we
will see in Theorems 4.4 and 4.9, thermodynamic equivalence of ensembles is mirrored by
equivalence-of-ensemble relationships at the level of equilibrium macrostates.

By virtue of its definition (1.2.6) or formula (1.3.3), ϕ is a finite, concave, continuous
function on IR. In the case of classical systems such as considered by Lanford [31], a
superadditivity argument based on the fact that the underlying Hamiltonian has finite
range shows that the analogue of s is an upper semicontinuous, concave function on IR. In
general, however, because of the local mean-field, long-range nature of the Hamiltonians in
the Miller-Robert model and other models of turbulence considered in this paper, the as-
sociated microcanonical entropies are typically not concave on subsets of IR corresponding
to a range of negative temperatures.

In order to see how concavity properties of s determine relationships between the sets
of equilibrium macrostates, we define for u ∈ IR the concave function

s∗∗(u)
.
= inf

β∈IR
{βu− s∗(β)} = inf

β∈IR
{βu− ϕ(β)}. (1.3.5)

Because of (1.3.4), it is obvious that s is concave on IR if and only if s and s∗∗ coincide.
Whenever s(u) > −∞ and s(u) = s∗∗(u), we shall say that s is concave at u.

Now assume that s is not concave on IR; i.e., there exists u ∈ IR for which −∞ <
s(u) 6= s∗∗(u). In this case, one easily shows that s∗∗ equals the smallest upper semicon-
tinuous, concave function majorizing s. In particular, when s is not concave on IR, it
cannot be recovered from ϕ via a Legendre-Fenchel transform.

As we now explain, concavity and nonconcavity properties of the microcanonical en-
tropy s have crucial implications for the equivalence and nonequivalence of ensembles
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at the level of equilibrium macrostates. In terms of such properties of s, we now give
preliminary and incomplete statements of the relationships between the sets Eu and Eβ of
equilibrium macrostates for the two ensembles. The reader is referred to Theorems 4.4,
4.6, and 4.8 for precise statements. For easy reference they are summarized in Figure 1
in Section 4.

For a given value of u, there are three possible relationships that can occur between
Eu and Eβ. If there exists a value of β such that Eu = Eβ, then the ensembles are said to
be fully equivalent. If instead of equality Eu is a proper subset of Eβ for some β, then the
ensembles are said to be partially equivalent. It may also happen that Eu ∩Eβ = ∅ for all
values of β. If this occurs, then the microcanonical ensemble is said to be nonequivalent
to any canonical ensemble or that nonequivalence of ensembles holds. It is convenient
to group the first two cases together. If for a given u there exists β such that either Eu

equals Eβ or Eu is a proper subset of Eβ, then the ensembles are said to be equivalent.
The relationships between Eu and Eβ depend on concavity and nonconcavity properties

of s, expressed through the equality or nonequality of s(u) and s∗∗(u). These relation-
ships are given next in items 1-3 together with references to where the results are stated
precisely. Criteria for equivalence of ensembles related to item 2 have been obtained in
various settings by a number of authors, including [12, 19, 32, 33]. However, the results
underlying items 1 and 3 are new.

1. Canonical is always microcanonical. For every β and every µ ∈ Eβ, there exists
u such that µ ∈ Eu [Theorem 4.6].

2. Equivalence. If −∞ < s(u) = s∗∗(u)—i.e., if s is concave at u—then there exists
β such that the ensembles are equivalent [Remark 4.2 and Theorem 4.4(a)].

3. Nonequivalence. If −∞ < s(u) 6= s∗∗(u)—i.e., if s is not concave at u—then the
corresponding microcanonical ensemble is nonequivalent to any canonical ensemble
[Remark 4.2 and Theorem 4.4(b)].

Let u be a point in IR such that s(u) > −∞. According to items 2 and 3, the ensembles
are equivalent if and only if s is concave at u. Under another natural hypothesis on u,
one shows that s is concave at u if and only if there exists a supporting line to the graph
of s at (u, s(u)) [Lem. 4.1(a)]; i.e., there exists β ∈ IR such that

s(w) ≤ s(u) + β(w − u) for all w ∈ IR.

In Theorem 4.8 we refine this necessary and sufficient condition for equivalence of en-
sembles by showing that the ensembles are fully equivalent if and only if there exists a
supporting line to the graph of s that touches the graph of s only at (u, s(u)); i.e., there
exists β ∈ IR such that

s(w) < s(u) + β(w − u) for all w 6= u.

A sufficient condition that guarantees this property of s is that s(u) = s∗∗(u) and s∗∗ is
strictly concave in a neighborhood of u.
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The relationships given in items 1-3 refine the relationships between the thermody-
namic functions ϕ and s. In fact, the thermodynamic equivalence of ensembles that holds
when s = s∗∗ on IR is reflected in the equivalence of ensembles for a given value of u when
−∞ < s(u) = s∗∗(u) [item 2]. On the other hand, when −∞ < s(u) 6= s∗∗(u) for some
value of u, the lack of symmetry between ϕ and s as expressed by (1.3.3) and (1.3.5) is
mirrored by a lack of symmetry between the microcanonical and canonical ensembles at
the level of equilibrium macrostates. For each β, every canonical equilibrium macrostate
in Eβ lies in Eu for some u [item 1]. However, for any u for which −∞ < s(u) 6= s∗∗(u) the
corresponding microcanonical ensemble is nonequivalent to any canonical ensemble [item
3].

We also prove a number of interesting results that follow easily from the main theorems.
For example, in Corollary 4.7 we show that if Eβ consists of a unique macrostate µ, then
Eu consists of the unique macrostate µ for a corresponding value of u (u = H̃(µ)). The
uniqueness of an equilibrium macrostate corresponds to the absence of a phase transition.

1.4 Examples of Nonconcave Microcanonical Entropies

The most striking of our results on equivalence and nonequivalence of ensembles is given
in item 3 near the end of the preceding subsection. If, for a given value of u, −∞ <
s(u) 6= s∗∗(u), then Eu is disjoint from the sets Eβ for all values of β. We next point out
a number of statistical mechanical models having a nonconcave microcanonical entropy
and thus exhibiting, for a range of values of u, the nonequivalence of ensembles that is
formulated in item 3.

1. Point vortex system. This is the first statistical mechanical model proposed in
the literature for studying the two-dimensional Euler equations. It is defined in
terms of a singular interaction function, which is a Green’s function. The model
was introduced by Onsager [41]; was further developed in the 1970’s, notably by
Joyce and Montgomery [25]; and continues to be the subject of important studies,
including [5, 8, 9, 26, 28]. Proposition 6.2 in [9] isolates a class of flow domains
for which the microcanonical entropy in the point vortex model is not a concave
function of its argument. As pointed out in [28, §6], the Monte Carlo study of a point
vortex system in a disk carried out in [48] also displays a nonconcave microcanonical
entropy. Strictly speaking, the results on nonequivalence of ensembles given in the
present paper apply only to a point vortex model in which the singular interaction
function in the classical model has been regularized; see part (a) of Example 2.3.
Nevertheless, special arguments can be invoked to extend them to the classical model
with singular point vortices.

2. Two-dimensional turbulence. A natural generalization, and also regularization,
of the point vortex model is the Miller-Robert model. In an unpublished numer-
ical study, Turkington and Liang consider the Miller-Robert model in a disk with
constraints on the energy, the total circulation, and the angular momentum (or
impulse) and with a prior distribution on the vorticity that corresponds to vortex
patch dynamics; this problem is the simplest Miller-Robert analogue of the problem
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studied in [48] in the point-vortex formulation. For fixed values of the total circu-
lation and the angular momentum, Turkington and Liang compute microcanonical
entropies as a function of energy using the algorithm developed in [51]. They find
that the microcanonical entropy-energy curve is concave on a certain interval and
nonconcave on a complementary interval. These computations produce equilibrium
macrostates that are vortices embedded in circular shear flows.

3. Quasi-geostrophic turbulence on a β-plane. The statistical equilibrium models
proposed in [50] are implemented in [14] for barotropic, quasi-geostrophic flow in a
channel on the β-plane. Various prior distributions on the potential vorticity are
considered; these include a saturated model, in which the maximum and minimum
of the potential vorticity constrain the microstate, and a dilute model, in which
only the mean potential-vorticity magnitude is imposed. Even in the absense of
geophysical effects (β = 0), the dilute model exhibits a nonconcave entropy-energy
curve, as displayed in Figure 4 of [14]. The equilibrium macrostates corresponding
to values of the energy for which the entropy is nonconcave are shears that transition
to monopolar vortices and then to dipolar vortices as the energy increases. When
the dilute model is replaced by the corresponding saturated model, in which an
upper bound on the microscopic potential vorticity is enforced, the equilibrium
macrostates are modified, particularly at high energies. As is shown in Figure 16 of
[14], the nonconcavity of the entropy-energy curve persists at low energies; at high
enough energies, however, it becomes concave, unlike in the dilute case. At these
high energies the equilibrium macrostates are not dipolar vortices, but rather shear
flows.

4. Quasi-geostrophic turbulence over topography. A more complete study of
the concavity of the microcanonical entropy is carried out in [16] for equivalent-
barotropic, quasi-geostrophic flow over bottom topography on an f -plane. As in [14]
a channel geometry is imposed, but for simplicity only shear flows are considered.
Within this symmetry class, the topography is chosen to be sinusoidal, the energy
and circulation are used as global invariants, and the prior distribution is taken to
be a Gamma distribution with mean 0, variance 1, and nonzero skewness. As a
function of the energy and the circulation, the entropy is nonconcave in more than
half of its domain. These two-constraint results are described in detail in Section 6
of [16].

5. Two-layer quasi-geostrophic turbulence. The one-layer model studied in [14]
is extended to a two-layer system in [13], where it is used to describe the physically
important phenomenon of open-ocean convection. In Figures 2 and 12 in that paper,
the entropy-energy curve is seen to be nonconcave; the microcanonical equilibrium
macrostates corresponding to values of the energy in the nonconcave region are
asymmetric baroclinic monopoles.
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1.5 Contents of This Paper

In Section 2 we introduce the class of statistical mechanical models that will be analyzed
in this paper. These models generalize the Miller-Robert model by incorporating a finite
sequence of interaction functions Hn,i rather than just the Hamiltonian. In order to carry
out the large deviation analysis, we assume that there exists a hidden process Yn that takes
values in a complete separable metric space X and has the following two properties: (a)
for each interaction function there exists a representation function H̃i such that uniformly
over microstates |Hn,i− H̃i ◦Yn| → 0 as n→ ∞; (b) with respect to the prior measure Pn
in the model, Yn satisfies the large deviation principle on X . In Section 2 we show that
with respect to the canonical ensemble Yn satisfies the large deviation principle, and we
derive several properties of the set of canonical equilibrium macrostates.

In Section 3 we consider the microcanonical ensemble, proving a large deviation princi-
ple and studying properties of the set of microcanonical equilibrium macrostates. We also
point out the constrained maximum entropy principles that characterize microcanonical
equilibrium macrostates in certain models including the Miller-Robert model.

Section 4 is devoted to the presentation of our complete results on the equivalence and
nonequivalence of the two ensembles. The results are proved in Theorems 4.4, 4.6, and
4.8 and are summarized in Figure 1.

In Section 5.1 we introduce mixed ensembles obtained by treating a subset of the
dynamical invariants canonically and the complementary subset of dynamical invariants
microcanonically. We then prove the large deviation principle for these ensembles. Sec-
tion 5.2 presents complete equivalence and nonequivalence results for the pure canonical
and mixed ensembles while Section 5.3 does the same for the mixed and the pure micro-
canonical ensembles. The results in Sections 5.2 and 5.3 follow from those in Section 4
with minimal changes in proof. They are summarized in Figures 2 and 3.

Acknowledgement. We thank Michael Kiessling for a number of useful conversations.

2 Canonical Ensemble: LDP and Equilibrium Macrostates

In this section we present a large deviation principle for the canonical ensemble in a wide
range of statistical mechanical models [Thm. 2.4(b)]. In terms of that principle, the set
of canonical equilibrium macrostates is defined and some of its properties derived [Thms.
2.4(c)-2.5]. After defining the class of models under consideration, we specify in Example
2.3 a number of specific models to which the theory applies.

The models that we consider are defined in terms of the following quantities.

Hypotheses 2.1.

• A sequence of probability spaces (Ωn,Fn, Pn) indexed by n ∈ IN ; Ωn are the config-
uration spaces for the statistical mechanical models.
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• A positive integer σ and for each n ∈ IN a sequence of interaction functions {Hn,i, i =
1, . . . , σ}, which are bounded measurable functions mapping Ωn into IR. We define
Hn

.
= (Hn,1, . . . , Hn,σ), which maps Ωn into IRσ.

• A sequence of positive scaling constants an → ∞.

Let 〈·, ·〉 denote the Euclidean inner product on IRσ. We define for each n ∈ IN ,
β = (β1, . . . , βσ) ∈ IRσ, and set B ∈ Fn the partition function

Zn(β)
.
=

∫

Ωn

exp

[

−
σ

∑

i=1

βiHn,i

]

dPn =

∫

Ωn

exp[−〈β,Hn〉] dPn,

which is well defined and finite, and the probability measure

Pn,β{B}
.
=

1

Zn(β)

∫

B

exp[−〈β,Hn〉] dPn. (2.1)

The measures Pn,β are Gibbs states that define the canonical ensemble for the given model.
For β ∈ IRσ, we also define

ϕ(β)
.
= − lim

n→∞

1

an
logZn(anβ)

if the limit exists and is nontrivial. In this formula β is scaled with an, as is usual in
studying the continuum limit of models of turbulence [6, §3]. We refer to ϕ(β) as the
canonical free energy. If σ = 1 and Hn,1 is the Hamiltonian of the system, then β = β1 is
the inverse temperature.

The first application of the theory of large deviations in this paper is to express ϕ(β)
as a variational formula. Let X be a Polish space (a complete separable metric space),
Yn random variables mapping Ωn into X , Qn probability measures on (Ωn,Fn), and I
a rate function on X . Thus I maps X into [0,∞] and for each M ∈ [0,∞) the set
{x ∈ X : I(x) ≤ M} is compact (compact level sets). For A a subset of X , we define
I(A)

.
= infx∈A I(x). We say that with respect to Qn the sequence Yn satisfies the large

deviation principle, or LDP, on X with scaling constants an and rate function I if for any
closed subset F of X the large deviation upper bound

lim sup
n→∞

1

an
logQn{Yn ∈ F} ≤ −I(F ) (2.2)

is valid and for any open subset G of X the large deviation lower bound

lim inf
n→∞

1

an
logQn{Yn ∈ F} ≥ −I(G) (2.3)

is valid. We say that with respect to Qn the sequence Yn satisfies the Laplace principle on
X with scaling constants an and rate function I if for all bounded continuous functions f
mapping X into IR

lim
n→∞

1

an
log

∫

Ωn

exp[anf(Yn)] dQn

= lim
n→∞

1

an
log

∫

X

exp[anf(x)]Qn{Yn ∈ dx} = sup
x∈X

{f(x) − I(x)}.
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As pointed out in Theorems 1.2.1 and 1.2.3 in [15], Yn satisfies the LDP with scaling
constants an and rate function I if and only if Yn satisfies the Laplace principle with
scaling constants an and rate function I. Evaluating the large deviation upper bound
(2.2) for F = X and the large deviation lower bound (2.3) for G = X yields I(X ) = 0,
and since I is nonnegative and has compact level sets, the set of x ∈ X for which I(x) = 0
is nonempty and compact. In the sequel we shall usually omit the phrase “with scaling
constants an” in the statements of LDP’s and Laplace principles.

A large deviation analysis of the general model is possible provided we can find, as
specified in Hypotheses 2.2, a hidden space, a hidden process, and a sequence of interaction
representation functions, and provided the hidden process satisfies the LDP on the hidden
space.

Hypotheses 2.2.

• Hidden space. This is a Polish space X .

• Hidden process. This is a sequence Yn, where each Yn is a random variable
mapping Ωn into X .

• Interaction representation functions. This is a sequence {H̃i, i = 1, . . . , σ} of
bounded continuous functions mapping X into IR such that as n→ ∞

Hn,i(ω) = H̃i(Yn(ω)) + o(1) uniformly for ω ∈ Ωn; (2.4)

i.e., limn→∞ supω∈Ωn

∣

∣

∣
Hn,i(ω) − H̃i(Yn(ω))

∣

∣

∣
= 0. We define H̃

.
= (H̃1, . . . , H̃σ), which

maps X into IRσ.

• LDP for the hidden process. There exists a rate function I mapping X into
[0,∞] such that with respect to Pn the sequence Yn satisfies the LDP on X , or
equivalently the Laplace principle on X , with rate function I.

In this context we use the term “hidden” because in many cases the choices of the space
X and the process Yn are far from obvious.

We next present several models of turbulence to which the results of this paper can
be applied.

Example 2.3. (a) Regularized Point Vortex Model. This model, analyzed in [19],
is an approximation to the point vortex model, which we first define. Let Λ be a smooth,
bounded, connected, open subset of IR2; g(x, x′) the Green’s function for −△ on Λ with
Dirichlet boundary conditions; h the continuous function mapping Λ into IR defined by
h(x)

.
= 1

2
g̃(x, x), where g̃(x, x′) is the regular part of the Green’s function g(x, x′); and

θ normalized Lebesgue measure on Λ satisfying θ(Λ) = 1. For n ∈ IN the point vortex
model is defined on the configuration spaces Ωn

.
= Λn with the Borel σ-field. Pn equals

the product measure on Ωn with identical one-dimensional marginals θ, and an
.
= n.
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Configurations ζ ∈ Λn give the locations ζ1, . . . , ζn of the n vortices. The interaction
function for the point vortex model is the Hamiltonian

Hn(ζ)
.
=

1

2n2

∑

1≤i<j≤n

g(ζi, ζj) +
1

n2

∑

1≤i≤n

h(ζi). (2.5)

Because g(x, x′) and h(x) are not bounded continuous functions of x and x′ in Λ, the
point vortex model cannot be studied by the methods of this paper, but must be analyzed
by other techniques [5, 8, 9, 26, 28]. The regularized point vortex model is defined like
the point vortex model except that in the formula for Hn g(x, x′) is replaced by a suitable
bounded continuous function V (x, x′) on Λ2 and h is replaced by a suitable bounded
continuous k on Λ.

For the regularized point vortex model the hidden space is the space X of probability
measures on Λ while the hidden process is the sequence of empirical measures

Yn(ζ) = Yn(ζ, dx)
.
=

1

n

n
∑

i=1

δζi(dx).

By Sanov’s Theorem, this sequence satisfies the large deviation principle on X with rate
function the relative entropy R(µ|θ) of µ with respect to θ [10, 11, 15]. For µ ∈ X the
interaction representation function is defined by

H̃(µ)
.
=

1

2

∫

Λ×Λ

V (x, x′)µ(dx)µ(dx′).

The approximation property (2.4) is easily verified.

(b) Miller-Robert Model. This model of the two-dimensional Euler equations is
analyzed in [6], which explains in detail the physical background. For simplicity, let the
flow domain be T 2, the unit torus [0, 1) × [0, 1) with periodic boundary conditions. For
each n ∈ IN let Ln be a uniform lattice of an

.
= 22n sites t in T 2. The intersite spacing in

each coordinate direction is 2−n. Each such lattice of an sites induces a dyadic partition of
T 2 into an squares called microcells, each having area 1/an. For each s ∈ Ln we denote by
M(s) the unique microcell containing the site s in its lower left corner. The configuration
spaces for the Miller-Robert model are Ωn

.
= Yan , where Y is a given compact subset of

IR. Microstates are denoted by ζ = {ζ(s), s ∈ Ln}. Let ρ be a probability measure on
IR with support Y . Pn equals the product measure on Ωn with identical one-dimensional
marginals ρ.

There are two classes of interaction functions, the Hamiltonian and the generalized
enstrophies. For ζ ∈ Ωn the Hamiltonian is defined by

Hn,1(ζ)
.
=

1

2n2

∑

s,s′∈L

gn(s− s′)ζ(s)ζ(s′) ,

where gn(s − s′) is a certain bounded continuous approximation to the lattice Green’s
function

g(s− s′)
.
=

∑

06=ξ∈ZZ2

|2πξ|−2 exp[2πi〈ξ, s− s′〉].
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Fix α ∈ IN . For i = 2, . . . , α+ 1 the generalized enstrophies are defined by

Hn,i(ζ)
.
=

1

n

∑

s∈Ln

ai(ζ(s)),

where the ai are continuous functions mapping Y into IR.
Hypotheses 2.2 are verified in [6], to which the reader is referred for details. Let θ

denote Lebesgue measure on T 2. The hidden space is the space X of probability measures
µ(dx×dy) on T 2×Y with first marginal θ. The hidden process is the sequence of measures

Yn(dx× dy) = Yn(ζ, dx× dy)
.
= θ(dx) ⊗

∑

s∈Ln

1M(s)(x) δζ(s)(dy).

For µ ∈ X the Hamiltonian interaction function is given by

H̃1(µ)
.
=

1

2

∫

(T 2×Y)2
g(x− x′)yy′ µ(dx× dy)µ(dx′ × dy′)

while for i = 2, . . . , α + 1 the interaction functions for the generalized enstrophies are
given by

H̃i(µ)
.
=

∫

T 2×Y

ai(y)µ(dx× dy).

For i = 1 one verifies (2.4) by a detailed Fourier analysis. For i = 2, . . . , α + 1 (2.4) is
easily verified to hold with no error term.

Given n ∈ IN and an even integer q < 2n, we consider a dyadic partition of the lattice
Ln into 2q blocks, each block containing an/2

q lattice sites. In correspondence with this
partition we have a dyadic partition {Dq,k, k = 1, . . . , 2q} of T 2 into macrocells. Each
macrocell is the union of an/2

q microcells M(s). The large deviation principle for Yn with
respect to Pn is verified by comparing Yn with the two-component process

Wn,q(dx× dy) = Wn,q(ζ, dx× dy)
.
= θ(dx) ⊗

2q
∑

k=1

1Dq,k
(x)Ln,q,k(ζ, dy),

where Ln,q,k denotes the empirical measure 1
an/2q

∑

s∈Dq,k
δζ(s)(dy). Through these empir-

ical measures, Wn,q introduces an averaging over the intermediate scale of the macrocells
and thus corresponds to a coarse graining of the vorticity field. Using Sanov’s Theorem,
one verifies that as n → ∞, q → ∞, Wn,q satisfies the two-parameter LDP on X with
rate function the relative entropy R(µ|θ × ρ) of µ(dx × dy) with respect to the product
measure θ(dx) × ρ(dy) [6, §5]. An approximation result relating Yn and Wn,q then allows
one to prove that Yn satisfies the LDP on X with the same rate function.

(c) Quasi-geostrophic potential vorticity model. This model of the quasi-
geostrophic potential vorticity equation, described in detail in [14] and [16], incorporates
the geophysical terms associated with the Coriolis effect, the deformation of an upper free
surface, and bottom topography. The large deviation analysis of the model is carried out
in [16].
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(d) Dispersive wave model for the nonlinear Schrödinger equation. This
model is defined in [23, 24], to which the reader is referred for details. The hidden process
is a Gaussian process taking values in L2[0, 1] and satisfying the LDP with respect to the
prior distribution that is proved in [18]. The large deviation analysis of this model is the
subject of [17].

We now return to the general model. Its large deviation analysis with respect to
the canonical ensemble is summarized in the next theorem. Part (a) states a variational
formula for ϕ(β), and part (b) gives the LDP for the hidden process Yn with respect to
the sequence of Gibbs measures Pn,β. Part (c) describes the set Eβ consisting of points
at which the rate function in part (b) attains its minimum of 0. Part (d) gives a con-
centration property of Eβ. As we point out after the statement of the theorem, Eβ can
be identified with the set of equilibrium macrostates of the statistical mechanical model.
The mathematical tractability of the canonical ensemble is reflected in the simplicity of
the proof of Theorem 2.4.

Theorem 2.4. We assume Hypotheses 2.1 and 2.2. For β ∈ IRσ the following conclusions

hold.

(a) ϕ(β)
.
= − limn→∞

1
an

logZn(anβ) exists and is given by

ϕ(β) = inf
x∈X

{〈β, H̃(x)〉 + I(x)}; (2.6)

ϕ(β) is a finite, concave, continuous function on IRσ.

(b) With respect to Pn,anβ, Yn satisfies the LDP on X with rate function

Iβ(x)
.
= I(x) + 〈β, H̃(x)〉 − inf

y∈X
{I(y) + 〈β, H̃(y)〉} = I(x) + 〈β, H̃(x)〉 − ϕ(β).

(c) The set Eβ
.
= {x ∈ X : Iβ(x) = 0} is a nonempty, compact subset of X . A point x̄

lies in Eβ if and only if

I(x̄) + 〈β, H̃(x̄)〉 = inf
y∈X

{I(y) + 〈β, H̃(y)〉} = ϕ(β);

equivalently, if and only if x̄ solves the following unconstrained minimization problem:

minimize (I(x) + 〈β, H̃(x)〉) over x ∈ X .

(d) If A is any Borel subset of X whose closure Ā satisfies Ā∩Eβ = ∅, then Iβ(Ā) > 0
and for some C <∞

Pn,anβ{Yn ∈ A} ≤ C exp[−anIβ(Ā)/2] → 0 as n→ ∞.

Proof. (a) Since Yn satisfies the LDP with respect to Pn, Yn satisfies the Laplace principle
with respect to Pn with the same rate function I. Hence by the approximation property
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(2.4) and the boundedness and continuity of the function mapping x 7→ 〈β, H̃(x)〉,

ϕ(β) = − lim
n→∞

1

an
logZn(anβ)

= − lim
n→∞

1

an
log

∫

Ωn

exp[−an〈β,Hn〉] dPn

= − lim
n→∞

1

an
log

∫

Ωn

exp[−an〈β, H̃(Yn)〉] dPn

= inf
x∈X

{〈β, H̃(x)〉 + I(x)}.

This formula exhibits ϕ as a finite, concave function on IRσ, which is therefore continuous
on IRσ.

(b) Iβ is a rate function since I is a rate function and the function mapping x 7→
〈β, H̃(x)〉 is bounded and continuous. In order to prove that with respect to Pn,anβ Yn
satisfies the LDP with rate function Iβ , it suffices to prove that with respect to Pn,anβ Yn
satisfies the Laplace principle with rate function Iβ. This is an immediate consequence of
(2.4) and part (a); for details, see the proof of part (b) of Theorem 3.1 in [6].

(c) Eβ is a nonempty, compact subset of X because Iβ is a rate function. The equivalent
characterizations of x̄ ∈ Eβ follow from the definition of Iβ .

(d) If Ā ∩ Eβ = ∅, then for each x ∈ A we have Iβ(x) > 0. Since Iβ is a rate function,
it follows that Iβ(Ā) > 0. The large deviation upper bound in part (b) yields the display
in part (d) for some C <∞. The proof of the theorem is complete.

Part (d) of Theorem 2.4 can be regarded as a concentration property of the Pn,anβ-
distributions of Yn. This property justifies calling Eβ the set of equilibrium macrostates
with respect to Pn,anβ{Yn ∈ dx} or, for short, as the set of canonical equilibrium macrostates.

The next theorem further justifies the designation of Eβ as the set of canonical equi-
librium macrostates by relating weak limits of subsequences of Pn,anβ{Yn ∈ ·} to Eβ. For
example, if one knows that Eβ consists of a unique point x̃, then it follows that the en-
tire sequence Pn,anβ{Yn ∈ ·} converges weakly to δx̃. This situation corresponds to the
absence of a phase transition. For specific models, more detailed information about weak
limits of subsequences of Pn,anβ have been obtained by a number of authors including
[9, 19, 26, 36].

Theorem 2.5. We assume Hypotheses 2.1 and 2.2. For β ∈ IRσ, any subsequence of

Pn,anβ{Yn ∈ ·} has a subsubsequence converging weakly to a probability measure Πβ on X
that is concentrated on Eβ

.
= {x ∈ X : Iβ(x) = 0}; i.e., Πβ{(Eβ)

c} = 0. If Eβ consists of a

unique point x̃, then the entire sequence Pn,anβ{Yn ∈ ·} converges weakly to δx̃.

Proof. Define a∗
.
= minn∈IN an > 0. As shown in the proof of Lemma 2.6 in [34], the large

deviation upper bound given in part (b) of Theorem 2.4 implies that for each M ∈ (0,∞)
there exists a compact subset K of X such that for all n ∈ IN

Pn,anβ{Yn ∈ Kc} ≤
e−anM

1 − e−M
≤

e−a
∗M

1 − e−M
.
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It follows that the sequence Pn,anβ{Yn ∈ ·} is tight and therefore that any subsequence
has a subsubsequence Pn′,an′β{Yn′ ∈ ·} converging weakly as n′ → ∞ to a probability
measure Πβ on X [Prohorov’s Theorem]. In order to show that Πβ is concentrated on
Eβ, we write the open set (Eβ)

c as a union of countably many open balls Vj such that
the closure V̄j of each Vj has empty intersection with Eβ. By part (c) of Theorem 2.4
Pn′,an′β{Yn′ ∈ Vj} → 0 as n′ → ∞, and so

0 = lim inf
n′→∞

Pn′,an′β{Yn′ ∈ Vj} ≥ Πβ{Vj}.

It follows that Πβ{Vj} = 0 and thus that Πβ{(Eβ)
c} = 0, as claimed.

Now assume that Eβ = {x̃}. Then the only probability measure on X that is concen-
trated on Eβ is δx̃. Since by the first part of the proof any subsequence of Pn,anβ{Yn ∈
·} has a subsubsequence converging weakly to δx̃, it follows that the entire sequence
Pn,anβ{Yn ∈ ·} converges weakly to δx̃. This completes the proof.

In the next section we consider the LDP for Yn when conditioning is present.

3 Microcanonical Ensemble: LDP and Equilibrium

Macrostates

As in the preceding section, we consider models defined in terms of a sequence of interac-
tion functions {Hn,i, i = 1 . . . , σ}, which are bounded measurable functions mapping Ωn

into IR. In general, the interaction functions represent conserved quantities with respect
to some dynamics that underlies the model. For suitable values of (u1, . . . , uσ) ∈ IRσ the
ideal way to define the microcanonical ensemble is to condition the probability measure
Pn on the set {Hn,1 = u1, . . . , Hn,σ = uσ}. However, in order to avoid problems concern-
ing the existence of regular conditional probability distributions, we shall condition Pn
on {Hn,1 ∈ [u1 − r, u1 + r], . . . , Hn,σ ∈ [uσ − r, uσ + r]}, where r ∈ (0, 1). These condi-
tioned measures, given in (3.4), define the microcanonical ensemble. Theorem 3.2 proves
the LDP for the distributions of Yn with respect to the microcanonical ensemble in the
double limit obtained by sending first n → ∞ and then r → 0. We then define, in terms
of the rate function in this LDP, the set of microcanonical equilibrium macrostates and
derive some of its properties.

For u = (u1, . . . , uσ) ∈ IRσ a key role in the large deviation analysis of the microcanon-
ical ensemble is played by

J(u)
.
= inf{I(x) : x ∈ X , H̃(x) = u}. (3.1)

In terms of J the canonical free energy ϕ(β), given in part (a) of Theorem 2.4 by

ϕ(β) = inf
x∈X

{〈β, H̃(x)〉 + I(x)},
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can be rewritten as

ϕ(β) = inf
u∈IRσ

{

inf{〈β, H̃(x)〉 + I(x) : x ∈ X , H̃(x) = u}
}

= inf
u∈IRσ

{〈β, u〉+ J(u)}.

Introducing the microcanonical entropy

s(u)
.
= −J(u) = − inf{I(x) : x ∈ X , H̃(x) = u}, (3.2)

we have
ϕ(β) = inf

u∈IRσ
{〈β, u〉 − s(u)}. (3.3)

This formula expresses ϕ as the Legendre-Fenchel transform of s. The microcanonical
entropy will play a central role in the results on equivalence and nonequivalence of the
canonical and microcanonical ensembles to be presented in Section 4.

The function J plays other roles in the theory. Since each H̃i is a bounded continuous
function mapping X into IR and since with respect to Pn Yn satisfies the LDP on X
with rate function I, it follows from the contraction principle that with respect to Pn
H̃(Yn) = (H̃1(Yn), . . . , H̃σ(Yn)) satisfies the LDP on IRσ with rate function J [10, Thm.
4.2.1]. When expressed in terms of the equivalent Laplace principle, this means that for
any bounded continuous function g mapping IRσ into IR

lim
n→∞

1

an
log

∫

Ωn

exp[an g(H̃(Yn))] dPn = sup
u∈IRσ

{g(u) − J(u)}.

Because of the approximation property (2.4), this readily extends to the Laplace principle
on IRσ, and thus the LDP on IRσ, for Hn

.
= (Hn,1, . . . , Hn,σ).

In part (a) of the next proposition we record the LDP’s just discussed and two proper-
ties of the microcanonical entropy. When applied to the regularized point vortex model,
the LDP for the Pn-distributions of Hn generalizes the large deviation estimates obtained
in [19, Thm. 2.1]. In parts (b) and (c) of the proposition some related facts needed later
in this section are given. We define dom J to be the set of u ∈ IRσ for which J(u) <∞.
For r ∈ (0, 1) and u ∈ dom J , we also define

{u}(r) .= [u1 − r, u1 + r] × · · · × [uσ − r, uσ + r].

Part (b) is a consequence of the LDP forHn given in part (a) and of the bound J(int({u}(r))) ≤
J(u). Part (c) follows from the lower semicontinuity of J and from part (b).

Proposition 3.1. We assume Hypotheses 2.1 and 2.2. The following conclusions hold.

(a) With respect to Pn, the sequences H̃(Yn) and Hn satisfy the LDP on IRσ with rate

function J . Hence s
.
= −J is nonpositive and upper semicontinuous.

(b) For u ∈ dom J and any r ∈ (0, 1)

−J(u) ≤ lim inf
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≤ lim sup
n→∞

1

an
logPn{Hn ∈ {u}(r)} ≤ −J({u}(r)).
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(c) As r → 0, J({u}(r)) ր J(u). Hence

lim
r→0

lim
n→∞

1

an
logPn{Hn ∈ {u}(r)} = −J(u).

The main theorem of this section is the LDP for Yn with respect to the microcanonical
ensemble, given in Theorem 3.2. For A ∈ Fn this ensemble is defined by the conditioned
measures

P u,r
n {A}

.
= Pn{A |Hn ∈ {u}(r)}, (3.4)

where u ∈ dom J and r ∈ (0, 1). For all sufficiently large n it follows from part (b) of
Proposition 3.1 that Pn{Hn ∈ {u}(r)} > 0 and hence that P u,r

n is well defined.

Theorem 3.2. Take u ∈ domJ and assume Hypotheses 2.1 and 2.2. With respect to the

conditioned measures P u,r
n , Yn satisfies the LDP on X , in the double limit n → ∞ and

r → 0, with rate function

Iu(x)
.
=

{

I(x) − J(u) if H̃(x) = u,
∞ otherwise.

That is, for any closed subset F of X

lim
r→0

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ F} ≤ −Iu(F ) (3.5)

and for any open subset G of X

lim
r→0

lim inf
n→∞

1

an
logP u,r

n {Yn ∈ G} ≥ −Iu(G). (3.6)

We first prove that Iu defines a rate function. Clearly Iu is nonnegative. For u ∈ domJ
and M <∞

{x ∈ X : Iu(x) ≤M} = {x ∈ X : I(x) ≤M + J(u)} ∩ H̃−1({u}).

Since J(u) <∞, I has compact level sets, and H̃−1({u}) is closed, it follows that Iu has
compact level sets.

Concerning the large deviation bounds in Theorem 3.2, we offer two proofs. The first
is preferred because it is close to the heuristic sketch of the LDP given in the introduction.
Throughout the two proofs we fix u ∈ dom J .

The first proof of the large deviation upper bound actually derives a stronger inequal-
ity. Namely, for all sufficiently small r ∈ (0, 1) and any closed subset F of X

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ F} ≤ −Iu(F ). (3.7)

For any x ∈ X and α > 0 we denote by B̄(x, α) and B(x, α) the closed ball and the open
ball in X with center x and radius α. Let δ > 0 be given. Since I is lower semicontinuous,
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for any x ∈ X and all sufficiently small α > 0 we have I(B̄(x, α)) ≥ I(x) − δ. Now take
any x ∈ X such that H̃(x) = u. For any r ∈ (0, 1) and all sufficiently small α the large
deviation upper bound for Yn with respect to Pn and part (b) of Proposition 3.1 yield

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ B̄(x, α)} (3.8)

≤ lim sup
n→∞

1

an
logPn{{Yn ∈ B̄(x, α)} ∩ {Hn ∈ {u}(r)}}

− lim inf
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≤ lim sup
n→∞

1

an
logPn{Yn ∈ B̄(x, α)}

− lim inf
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≤ −I(B̄(x, α)) + J(u)

≤ −I(x) + J(u) + δ

= −Iu(x) + δ.

Now take any x ∈ X such that H̃(x) 6= u. Thus Iu(x) = ∞, and there exists t ∈ (0, 1)
such that H̃(x) 6∈ {u}(t). By the approximation property (2.4) and the continuity of H̃,
for any r ∈ (0, t), all sufficiently small α > 0, and all sufficiently large n we have

{Yn ∈ B̄(x, α)} ∩ {Hn ∈ {u}(r)} ⊂ {Yn ∈ B̄(x, α)} ∩ {H̃(Yn) ∈ {u}(t)} = ∅.

Hence for such r and α

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ B̄(x, α)}

≤ lim sup
n→∞

1

an
logPn{{Yn ∈ B̄(x, α)} ∩ {Hn ∈ {u}(r)}}

− lim inf
n→∞

1

an
logPn{Hn ∈ {u}(r)}

= −∞ = −Iu(x).

We have proved that for any x ∈ X , all sufficiently small r ∈ (0, 1), and all sufficiently
small α > 0

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ B̄(x, α)} ≤ −Iu(x) + δ.

Let F be a compact subset of X . We can cover F with finitely many closed balls B̄(xi, αi)
with xi ∈ F and αi > 0 so small that the last display is valid for x = xi, all sufficiently
small r ∈ (0, 1), and α = αi. It follows that for all sufficiently small r ∈ (0, 1)

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ F} ≤ −min
i
Iu(xi) + δ ≤ −I(F ) + δ.

Sending δ → 0 yields the upper bound (3.7). Finally, for any closed set F the upper
bound (3.7) is a consequence of the following uniform exponential tightness estimate.
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Lemma 3.3. Fix u ∈ dom J . Then for all sufficiently large M ∈ (0,∞) there exists a

compact subset D of X such that for every r ∈ (0, 1)

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ Dc} ≤ −M.

Proof. Given u ∈ dom J , we take M > J(u). As shown in the proof of Lemma 2.6 in
[34], the large deviation upper bound satisfied by Yn with respect to Pn implies that there
exists a compact subset D of X such that

lim sup
n→∞

1

an
logPn{Yn ∈ Dc} ≤ −2M.

Since for every r ∈ (0, 1)

P u,r
n {Yn ∈ Dc} ≤

Pn{Yn ∈ Dc}

Pn{Hn ∈ {u}(r)}
,

it follows from part (b) of Proposition 3.1 that

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ Dc}

≤ lim sup
n→∞

1

an
logPn{Yn ∈ Dc} − lim inf

n→∞

1

an
logPn{Hn ∈ {u}(r)}

≤ −2M + J(u) ≤ −M.

This completes the proof.

We next prove the large deviation lower bound in Theorem 3.2 by showing that for
any fixed r ∈ (0, 1) and any open subset G of X

lim inf
n→∞

1

an
logP u,r

n {Yn ∈ G} ≥ −Iu(G) + J({u}(r)) − J(u). (3.9)

Sending r → 0 and using part (c) of Proposition 3.1 yields the large deviation lower bound
in Theorem 3.2.

Let x be any point in G such that H̃(x) = u. By the approximation property (2.4)
and the continuity of H̃, for any number r− satisfying 0 < r− < r and all sufficiently large
n, we can choose α > 0 to be so small that B(x, α) ⊂ G and

{Yn ∈ B(x, α)} ∩ {Hn ∈ {u}(r)} ⊃ {Yn ∈ B(x, α)} ∩ {H̃(Yn) ∈ {u}(r−)}

= {Yn ∈ B(x, α)}.

Hence for such α, the large deviation lower bound for Yn with respect to Pn and part (b)
of Proposition 3.1 yield

lim inf
n→∞

1

an
logP u,r

n {Yn ∈ G}
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≥ lim inf
n→∞

1

an
logP u,r

n {Yn ∈ B(x, α)}

≥ lim inf
n→∞

1

an
logPn{{Yn ∈ B(x, α)} ∩ {Hn ∈ {u}(r)}}

− lim sup
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≥ lim inf
n→∞

1

an
logPn{Yn ∈ B(x, α)}

− lim sup
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≥ −I(B(x, α)) + J({u}(r))

≥ −I(x) + J({u}(r))

= −Iu(x) + J({u}(r)) − J(u).

Now take any x ∈ X such that H̃(x) 6= u. Since Iu(x) = ∞, it follows that

lim inf
n→∞

1

an
logP u,r

n {Yn ∈ G} ≥ −∞ = −Iu(x) + J({u}(r)) − J(u).

We have thus obtained the same lower bound for all x ∈ G. We conclude that

lim inf
n→∞

1

an
logP u,r

n {Yn ∈ G} ≥ sup
x∈G

{−Iu(x)} + J({u}(r)) − J(u)

= −Iu(G) + J({u}(r)) − J(u).

This completes the proof of the large deviation lower bound (3.9). The proof of Theorem
3.2 is done.

The second proof of the large deviation bounds in Theorem 3.2 uses the following
alternate representation for the rate function:

Iu(x) = I({x} ∩ H̃−1({u})).

Let F be any closed subset of X . We choose ψ to be any function mapping (0, 1) onto
(0, 1) with the properties that ψ(r) > r for all r ∈ (0, 1) and limr→0 ψ(r) = 0. Clearly, as
r ↓ 0, {u}(ψ(r)) ↓ {u}. We need the limit

lim
r→0

I(F ∩ H̃−1({u}(ψ(r)))) = I(F ∩ H̃−1(u)),

which follows from routine calculations using the continuity of H̃ and the fact that Iu

is a rate function. The proof of this limit is omitted. The rest of the proof of the large
deviation upper bound is straightforward. By the approximation property (2.4) and the
continuity of H̃, for any r ∈ (0, 1) and all sufficiently large n

Pn{{Yn ∈ F} ∩ {Hn ∈ {u}(r)}} ≤ Pn{{Yn ∈ F} ∩ {H̃(Yn) ∈ {u}(ψ(r))}}.
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Then the large deviation upper bound for Yn with respect to Pn and part (c) of Proposition
3.1 yield

lim
r→0

lim sup
n→∞

1

an
logP u,r

n {Yn ∈ F}

≤ lim
r→0

lim sup
n→∞

1

an
logPn{Yn ∈ [F ∩ H̃−1({u}(ψ(r)))]}

− lim
r→0

lim inf
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≤ − lim
r→0

I(F ∩ H̃−1({u}(ψ(r)))) + J(u)

= −I(F ∩ H̃−1(u)) + J(u)

= −Iu(F ).

This is the large deviation upper bound (3.5).
Now let G be any open subset of X . Again by the approximation property (2.4) and

the continuity of H̃, for any number r− satisfying 0 < r− < r and all sufficiently large n

Pn{{Yn ∈ G} ∩ {Hn ∈ {u}(r)}}

≥ Pn{{Yn ∈ G} ∩ {H̃(Yn) ∈ {u}(r−)}}

≥ Pn{Yn ∈ G ∩ H̃−1(int{u}(r−))}.

The large deviation lower bound for Yn with respect to Pn and part (c) of Proposition 3.1
yield

lim
r→0

lim inf
n→∞

1

an
logP u,r

n {Yn ∈ G}

≥ lim
r→0

lim inf
n→∞

1

an
logPn{Yn ∈ [G ∩ H̃−1(int{u}(r−))]}

− lim
r→0

lim
n→∞

1

an
logPn{Hn ∈ {u}(r)}

≥ − lim
r→0

I(G ∩ H̃−1(int{u}(r−))) + J(u)

≥ −I(G ∩ H̃−1(u)) + J(u)

= −Iu(G).

This is the large deviation lower bound (3.6), completing the second proof of the large
deviation bounds in Theorem 3.2. The proof of Theorem 3.2 is done.

In Section 2 the large deviation analysis of the canonical ensemble led us to define,
in terms of the rate function in the corresponding LDP, the set of canonical equilibrium
macrostates. Analogously, for u ∈ dom J we define, in terms of the rate function Iu in
Theorem 3.2, the set of microcanonical equilibrium macrostates

Eu
.
= {x ∈ X : Iu(x) = 0}.
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Thus x̄ ∈ Eu if and only if I(x̄) = J(u) and H̃(x̄) = u. We next point out that in
certain models elements of Eu have an equivalent characterization in terms of constrained
maximum entropy principles.

Remark 3.4. Equivalent characterization in terms of constrained maximum

entropy principles. Since J(u) equals the infimum of I over all elements x satisfying
the constraint H̃(x) = u, we see that x̄ ∈ Eu if and only if x̄ solves the following constrained
minimization problem:

minimize I(x) over x ∈ X subject to the constraint H̃(x) = u.

Both for the regulariued point vortex model and the Miller-Robert model the rate function
I equals a relative entropy, which in turn equals minus the physical entropy. Hence
for these models the last display gives an equivalent characteriuation of microcanonical
equilibrium macrostates in terms of a constrained maximum entropy principle.

Parts (c) and (d) of Theorem 2.4 state several properties of the set Eβ of canonical
equilibrium macrostates. The next theorem gives analogous properties of Eu. The second
of these properties is slightly more complicated than in the canonical case because the
microcanonical measures P u,r

n depend on the two parameters n ∈ IN and r ∈ (0, 1).

Theorem 3.5. We assume Hypotheses 2.1 and 2.2. For u ∈ dom J the following conclu-

sions hold.

(a) Eu
.
= {x ∈ X : Iu(x) = 0} is a nonempty, compact subset of X . A point x̄ ∈ X

lies in Eu if and only if I(x̄) = J(u) and H̃(x̄) = u; equivalently, if and only if x̄ solves

the following constrained minimization problem:

minimize I(x) over x ∈ X subject to the constraint H̃(x) = u.

(b) Let A be any Borel subset of X whose closure Ā satisfies Ā ∩ Eu = ∅. Then

Iu(Ā) > 0. In addition, there exists r0 ∈ (0, 1) and for all r ∈ (0, r0] there exists Cr <∞
such that

P u,r
n {Yn ∈ A} ≤ Cr exp[−anI

u(Ā)/2] → 0 as n→ ∞.

Proof. (a) Eu is a nonempty, compact subset of X because Iu is a rate function. The
equivalent characterizations of x̄ ∈ Eu follow from the formula for Iu.

(b) If Ā∩ Eu = ∅, then for each x ∈ A we have Iu(x) > 0. Since Iu is a rate function,
it follows that Iu(Ā) > 0. The large deviation upper bound for the P u,r

n -distributions of
Yn given in (3.5) completes the proof.

Part (b) of Theorem 3.5 can be regarded as a concentration property of the P u,r
n -

distributions of Yn. This property justifies calling Eu the set of microcanonical equilibrium
macrostates.

Theorem 2.5 studies compactness properties of the sequence of Pn,anβ-distributions
of Yn and shows that any weak limit of a convergent subsequence of this sequence is
concentrated on Eβ. In the next theorem we formulate an analogue for the microcanonical
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ensemble, studying compactness and weak limit properties of the P u,r
n -distributions of Yn.

In the case of the classical lattice gas, a related result is given, for example, in [12, Lem.
4.1].

Theorem 3.6. We assume Hypotheses 2.1 and 2.2. For u ∈ dom J the following conclu-

sions hold.

(a) For r ∈ (0, 1), any subsequence of P u,r
n {Yn ∈ ·} has a subsubsequence P u,r

n′ {Yn′ ∈ ·}
converging weakly to a probability measure Πu,r on X as n′ → ∞.

(b) There exists r0 ∈ (0, 1) such that for all r ∈ (0, r0] Πu,r is concentrated on Eu;
i.e., Πu,r{(Eu)c} = 0. Thus if Eu consists of a unique point x̃, then for all r ∈ (0, r0] the

entire sequence P u,r
n {Yn ∈ ·} converges weakly to δx̃ as n→ ∞.

(c) For any sequence rk ⊂ (0, 1) converging to 0, any subsequence of Πu,rk has a

subsubsequence converging weakly to a probability measure Πu on X that is concentrated

on Eu.

Proof. (a) Define a∗
.
= minn∈IN an > 0. The exponential tightness estimate in Lemma

3.3 implies that for all sufficiently large M ∈ (0,∞) there exists a compact subset D of
X such that for all r ∈ (0, 1) and all sufficiently large n

P u,r
n {Yn ∈ Dc} ≤ exp[−anM/2] ≤ exp[−a∗M/2]. (3.10)

Since M can be taken to be arbitrarily large, this yields the tightness of the sequence
P u,r
n {Yn ∈ ·}. The tightness implies that any subsequence of P u,r

n {Yn ∈ ·} has a subsub-
sequence P u,r

n′ {Yn′ ∈ ·} converging weakly to a probability measure Πu,r on X as n′ → ∞
[Prohorov’s Theorem]. This completes the proof of part (a).

(b) We use the value of r0 from part (b) of Theorem 3.5. As in the proof of Theorem
2.5, in order to prove the concentration property of Πu,r, we write the open set (Eu)c as
a union of countably many open balls Vj such that the closure V̄j of each Vj has empty
intersection with Eu. Let P u,r

n′ {Yn′ ∈ ·} ⇒ Πu,r be the subsubsequence arising in the proof
of part (a) of the present theorem. For r ∈ (0, r0], part (b) of Theorem 3.5 implies that
P u,r
n′ {Yn′ ∈ Vj} → 0 as n′ → ∞, and so

0 = lim inf
n′→∞

P u,r
n′ {Yn′ ∈ Vj} ≥ Πu,r{Vj}.

It follows that Πu,r{Vj} = 0 and thus that Πu,r{(Eu)c} = 0, as claimed. If Eu consists
of a unique point x̃, then as in the proof of Theorem 2.5, one shows that as n → ∞
P u,r
n {Yn ∈ ·} ⇒ δx̃. This completes the proof of part (b).

(c) This follows from part (b), Prohorov’s Theorem, and the compactness of Eu. The
proof of Theorem 3.6 is complete.
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4 Equivalence and Nonequivalence of Ensembles

In the preceding section we presented, for the microcanonical ensemble, analogues of
results proved for the canonical ensemble in Section 2. These include large deviation
theorems and properties of the set of equilibrium macrostates. Such analogues of results
for the two ensembles point to a much deeper relationship between them. As we will
soon see, the two ensembles are intimately related both at the level of thermodynamic
functions and at the level of equilibrium macrostates, and the results at these two levels
mirror each other.

Our main results on equivalence and nonequivalence of ensembles at the level of equi-
librium macrostates are presented in Theorems 4.4, 4.6, and 4.8 and are summarized
in Figure 1. Definitive and complete, they express, in terms of concavity and other
properties of the microcanonical entropy, relationships between the sets of canonical and
microcanonical equilibrium macrostates. The proofs of these relationships are based on
straightforward concave analysis. Other results in this section explore related issues. For
example, Corollary 4.7 is a uniqueness result for equilibrium macrostates, Theorem 4.10
relates the equivalence of ensembles to the differentiability of the canonical free energy,
and Theorem 4.11 shows that a certain equivalence-of-ensemble relationship implies a
concavity property of the microcanonical entropy.

We start our presentation by recalling an elementary result at the level of thermo-
dynamic functions. The microcanonical entropy is the nonpositive function defined for
u ∈ IRσ by

s(u)
.
= −J(u)

.
= − inf{I(x) : x ∈ X , H̃(x) = u}.

We define dom s as the set of u ∈ IRσ for which s(u) > −∞. As shown in (3.3), the
canonical free energy ϕ(β) can be obtained from s by the formula

ϕ(β) = inf
u∈IRσ

{〈β, u〉 − s(u)}, (4.1)

which expresses ϕ as the Legendre-Fenchel transform s∗ of s. In general, ϕ = s∗ is finite,
concave, and continuous on IRσ [Thm. 2.4(a)], and s is upper semicontinuous [Prop.
3.1(a)]. If it is the case that s is concave on IRσ, then concave function theory implies
that s equals the Legendre-Fenchel transform of ϕ [45, p. 104]; viz., for u ∈ IRσ

s(u) = ϕ∗(u) = inf
β∈IRσ

{〈β, u〉 − ϕ(β)}. (4.2)

If s is concave on IRσ, then following standard terminology in the statistical mechan-
ical literature, we say that the canonical ensemble and the microcanonical ensemble are
thermodynamically equivalent [28, 33]. As we will see, when properly interpreted, the
nonconcavity of s at points u ∈ IRσ will imply that the ensembles are nonequivalent at
the level of equilibrium macrostates for those values of u [Thm. 4.4(b)]. Further con-
nections between thermodynamic equivalence of ensembles and equivalence of ensembles
at the level of equilibrium macrostates are made explicit in Theorem 4.9. In particular,
under a hypothesis on the domains of various functions that is not necessarily satisfied in
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all models of interest, thermodynamic equivalence of ensembles is a necessary and suffi-
cient condition for equivalence of ensembles to hold at the level of equilibrium macrostates
[Thm. 4.9(c)].

The concavity of s on IRσ depends on the nature of I and H̃. For example, if I
is concave on X and H̃ is affine, then s is concave on IRσ. However, in general the
concavity of s is not valid. In fact, because of the local mean-field, long-range nature
of the Hamiltonians arising in many models of turbulence, including the Miller-Robert
model [Example 2.3(b)], the associated microcanonical entropies are typically not concave
on subsets of IRσ corresponding to a range of negative temperatures.

In order to see how concavity properties of s determine relationships between the sets
of equilibrium macrostates, we define for u ∈ IRσ the concave function

s∗∗(u)
.
= inf

β∈IRσ
{〈β, u〉 − s∗(β)} = inf

β∈IRσ
{〈β, u〉 − ϕ(β)}.

Because of (4.2), it is obvious that s is concave on IRσ if and only if s and s∗∗ coincide.
Whenever s(u) > −∞ and s(u) = s∗∗(u), we shall say that s is concave at u.

Now assume that s is not concave on IRσ. Since for any u ∈ dom s and all β ∈ IRσ we
have s(u) ≤ 〈β, u〉 − s∗(β), it follows that for all u ∈ IRσ

s(u) ≤ inf
β∈IRσ

{〈β, u〉 − s∗(β)} = s∗∗(u). (4.3)

In addition, if f is any upper semicontinuous, concave function satisfying s(u) ≤ f(u) for
all u ∈ IRσ, then for all β ∈ IRσ s∗(β) ≥ f ∗(β) and thus s∗∗(u) ≤ f ∗∗(u) = f(u) for all
u ∈ IRσ. It follows that if s is not concave on IRσ, then s∗∗ is the upper semicontinuous,
concave hull of s; i.e., the smallest upper semicontinuous, concave function on IRσ that
majorizes s. In particular, if s(u) > −∞, then s∗∗(u) > −∞; thus dom s ⊂ dom s∗∗.

Since s∗∗ is an upper semicontinuous, concave function, we can introduce a basic
concept in concave function theory that will play a key role in our results on equivalence
and nonequivalence of ensembles. For u ∈ dom s∗∗ the superdifferential of s∗∗ at u is
defined as the set ∂s∗∗(u) consisting of β ∈ IRσ such that

s∗∗(w) ≤ s∗∗(u) + 〈β, w − u〉 for all w ∈ IRσ; (4.4)

any such β is called a supergradient of s∗∗ at u. The effective domain of the superdiffer-
ential of s∗∗ is defined to be the set dom ∂s∗∗ consisting of u ∈ IRσ for which ∂s∗∗(u) is
nonempty. It can be shown that [45, p. 217]

ri(dom s∗∗) ⊂ dom ∂s∗∗ ⊂ dom s∗∗, (4.5)

where forA a subset of IRσ ri(domA) denotes the relative interior ofA. These relationships
imply that ∂s∗∗(u) is nonempty for u ∈ dom s∗∗ except possibly for u in the relative
boundary of dom s∗∗.

The purpose of this section is to investigate, in terms of concavity properties of s and
s∗∗, relationships between the set Eβ of canonical equilibrium macrostates and the set Eu

33



of microcanonical equilibrium macrostates. We recall that for β ∈ IRσ and u ∈ dom s
these sets are defined by

Eβ = {x ∈ X : Iβ(x) = 0}

=

{

x ∈ X : I(x) + 〈β, H̃(x)〉 = inf
y∈X

{I(y) + 〈β, H̃(y)〉} = ϕ(β)

}

and
Eu

.
= {x ∈ X : Iu(x) = 0} = {x ∈ X : H̃(x) = u, I(x) = −s(u)}.

Iβ is the rate function in the LDP for the canonical ensemble [Thm. 2.4], and Iu is the
rate function in the LDP for the microcanonical ensemble [Thm. 3.2]. As the sets of
points at which the corresponding rate functions attain their minimum of 0, both Eβ for
β ∈ IRσ and Eu for u ∈ dom s are nonempty and compact. It is convenient to extend the
definition of Eu to all u ∈ IRσ by defining Eu = ∅ for u ∈ IRσ \ dom s.

First-order differentiability conditions show that relationships between Eβ and Eu are
plausible. In fact, the first-order condition for x∗ ∈ X to be in Eβ is

I ′(x∗) + 〈β, H̃ ′(x∗)〉 = 0, (4.6)

where ′ denotes the Frechet derivative and we assume that I and H̃ are Frechet-differentiable.
The first-order condition for x∗ ∈ X to be in Eu is also (4.6), where β is a Lagrange mul-
tiplier dual to the constraint H̃(x∗) = u. In order to see the precise relationships between
Eu and Eβ, we need a more detailed analysis.

As we will see, there are three possible relationships that can occur between Eu and
Eβ. If for a given u ∈ dom s there exists β ∈ IRσ such that Eu = Eβ, then the ensembles
are said to be fully equivalent or that full equivalence of ensembles holds. If instead of
equality Eu is a proper subset of Eβ for some β ∈ IRσ, then the ensembles are said to be
partially equivalent or that partial equivalence of ensembles holds. It may also happen
that Eu ∩ Eβ = ∅ for all β ∈ IRσ. If this occurs, then the microcanonical ensemble is said
to be nonequivalent to any canonical ensemble or that nonequivalence of ensembles holds.
It is convenient to group the first two cases together. If for a given u there exists β such
that either Eu equals Eβ or Eu is a proper subset of Eβ, then the ensembles are said to be
equivalent or that equivalence of ensembles holds.

The probabilistic role played by Eu and Eβ should be kept in mind when interpreting
these relationships. According to part (c) of Theorem 2.4, for any Borel subset A whose
closure is disjoint from Eβ, Pn,anβ{Yn ∈ A} → 0. Theorem 2.5 refines this by showing that
convergent subsequences of Pn,anβ{Yn ∈ ·} have weak limits with support in Eβ. Theorems
3.5 and 3.6 do the same for the microcanonical ensemble. Only when Eβ = Eu = {x}
can we be sure that the two ensembles give the same prediction in the sense of weak
convergence. A condition implying these equalities is given in Corollary 4.7.

A key insight revealed by our results is that the set Eu of microcanonical equilibrium
macrostates can be richer than the set Eβ of canonical equilibrium macrostates. Specif-
ically, every x ∈ Eβ is also in Eu for some u, but if the microcanonical entropy s is not
concave at some u, then any x ∈ Eu does not lie in Eβ for any β (nonequivalence of ensem-
bles). This verbal description is made precise in Theorems 4.4 and 4.6, while Theorems
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4.4 and 4.8 give necessary and sufficient conditions for equivalence of ensembles to hold.
The content of Theorem 4.6 is summarized in Figure 1(a). The contents of Theorems 4.4
and 4.8 are summarized in Figure 1(b).

Theorem 4.4 gives a geometric condition that is necessary and sufficient for equivalence
of ensembles to hold. We define C to be the set of u ∈ IRσ for which there exists a
supporting hyperplane to the graph of s at (u, s(u)). In symbols,

C
.
= {u ∈ IRσ : ∃β ∈ IRσ ∋ s(w) ≤ s(u) + 〈β, w− u〉 for all w ∈ IRσ}. (4.7)

If u ∈ C, then the β appearing in this display is a normal vector to the supporting
hyperplane. According to part (a) of Theorem 4.4, for a particular u ∈ dom s equivalence
of ensembles holds if and only if u ∈ C. According to part (b) of the theorem, for a
particular u ∈ dom s nonequivalence of ensembles holds if and only if u 6∈ C.

Theorem 4.8 refines part (a) of Theorem 4.4 by giving a geometric condition that is
necessary and sufficient for full equivalence of ensembles to hold. We define T to be the set
of u ∈ IRσ for which there exists a supporting hyperplane to the graph of s that touches
the graph of s only at (u, s(u)). In symbols,

T
.
= {u ∈ IRσ : ∃β ∈ IRσ ∋ s(w) < s(u) + 〈β, w − u〉 for all w 6= u}. (4.8)

Clearly, T is a subset of C, which is the set of u for which equivalence of ensembles holds
[Thm. 4.4(a)]. According to Theorem 4.8, for a particular u ∈ dom s full equivalence of
ensembles holds if and only if u ∈ T .

Before proving any results on the equivalence and nonequivalence of ensembles, we
point out an alternate representation of C that will elucidate the connection between
these results and concavity properties of s and s∗∗. In general s is not concave on IRσ.
According to part (b) of Lemma 4.1, C equals the set of u ∈ dom ∂s∗∗ at which s is
concave; i.e., the set of u ∈ dom ∂s∗∗ such that s(u) equals the value at u of the concave
function s∗∗. It follows from part (b) of Lemma 4.1 that if s is not concave at some
u ∈ dom s, then u 6∈ C and so nonequivalence of ensembles holds [Thm. 4.4 (b)].

It is easy to find a sufficient condition on s∗∗ for full equivalence of ensembles to hold.
Suppose that for some u ∈ IRσ s(u) = s∗∗(u) and that there exists β ∈ IRσ such that

s∗∗(w) < s∗∗(u) + 〈β, w− u〉 for all w 6= u; (4.9)

i.e., the inequality (4.4) defining β ∈ ∂s∗∗(u) holds with strict inequality for all w 6= u.
Since s(w) ≤ s∗∗(w), it follows that

s(w) < s(u) + 〈β, w− u〉 for all w 6= u. (4.10)

That is, u lies in T , which according to Theorem 4.8 is the subset of IRσ for which full
equivalence of ensembles holds. If, for example, s∗∗ is strictly concave in a neighborhood
of u, then (4.9) holds for any β ∈ ∂s∗∗(u) and thus we have full equivalence of ensembles.

In order to find a sufficient condition on s∗∗ for partial equivalence of ensembles to
hold, let u be a point in IRσ such that s∗∗ is affine in a neighborhood of u. Then except
in pathological cases, for any β ∈ IRσ the strict inequality (4.10) cannot be valid for all
w 6= u, and so partial equivalence of ensembles holds.
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Part (b) of the next lemma gives the alternate representation of C to which we referred
three paragraphs earlier. This representation involves the set

Γ
.
= {u ∈ IRσ : s(u) = s∗∗(u)}.

Lemma 4.1. (a) For u and β in IRσ, s(w) ≤ s(u) + 〈β, w − u〉 for all w ∈ IRσ if and

only if both s(u) = s∗∗(u) and β ∈ ∂s∗∗(u).
(b) C = Γ ∩ dom ∂s∗∗, and C ⊂ Γ ∩ dom s.

Remark 4.2. It is not difficult to refine the second assertion in part (b) of this lemma
by showing that

Γ ∩ ri(dom s) ⊂ C = Γ ∩ dom ∂s∗∗ ⊂ Γ ∩ dom s.

This relationship implies that, except possibly for relative boundary points of dom s, C
consists of u ∈ dom s for which s(u) = s∗∗(u). According to Theorem 4.4, equivalence of
ensembles holds for a particular u ∈ dom s if and only if u ∈ C. Combining this with the
observation in the preceding sentence, we see that, except possibly for relative boundary
points of dom s, equivalence of ensembles holds for u ∈ dom s if and only if s(u) = s∗∗(u).

Proof of Lemma 4.1. (a) We start the proof by first assuming that s(w) ≤ s(u) +
〈β, w−u〉 for all w ∈ IRσ. It follows that u ∈ dom s and that 〈β, u〉−s(u) ≤ 〈β, w〉−s(w)
for all w ∈ IRσ. Therefore

〈β, u〉 − s(u) = inf
w∈IRσ

{〈β, w〉 − s(w)} = ϕ(β).

Since s∗∗(w) = infγ∈IRσ{〈γ, w〉−ϕ(γ)} ≤ 〈β, w〉−ϕ(β), the last display and the inequality
s(u) ≤ s∗∗(u) imply that for all w ∈ IRσ

s∗∗(w) ≤ 〈β, w〉 − ϕ(β) = s(u) + 〈β, w〉 − 〈β, u〉

≤ s∗∗(u) + 〈β, w − u〉.

Thus β ∈ ∂s∗∗(u). Setting w = u yields s(u) = s∗∗(u).
Now assume that s(u) = s∗∗(u) and that β ∈ ∂s∗∗(u); thus for all w ∈ IRσ

s∗∗(w) ≤ s∗∗(u) + 〈β, w − u〉 = s(u) + 〈β, w− u〉.

Since s(w) ≤ s∗∗(w) for all w ∈ IRσ, it follows that for all w ∈ IRσ

s(w) ≤ s(u) + 〈β, w− u〉.

This completes the proof of part (a).
(b) The first assertion is an immediate consequence of part (a). As mentioned in the

proof of part (a), if u ∈ C, then u ∈ dom s. We conclude that C ⊂ Γ∩ dom s, as claimed.

The next lemma will facilitate the proofs of a number of our results on the equivalence
and nonequivalence of ensembles. Part (b) refines one of the conditions in part (a),
substituting a weaker hypothesis that leads to the same conclusion.
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Lemma 4.3. For u and β ∈ IRσ the following conclusions hold.

(a) The inequality s(w) ≤ s(u) + 〈β, w − u〉 is valid for all w ∈ IRσ if and only if

Eu 6= ∅ and Eu ⊂ Eβ.
(b) If Eu ∩ Eβ 6= ∅, then s(w) ≤ s(u) + 〈β, w− u〉 for all w ∈ IRσ.

Proof. We first prove that if s(w) ≤ s(u) + 〈β, w − u〉 for all w ∈ IRσ, then Eu 6= ∅ and
Eu ⊂ Eβ. The hypothesis implies that u ∈ dom s and that 〈β, u〉 − s(u) ≤ 〈β, w〉 − s(w)
for all w ∈ IRσ. Therefore

〈β, u〉 − s(u) = inf
w∈IRσ

{〈β, w〉 − s(w)} = ϕ(β) = inf
y∈X

{〈β, H̃(y)〉 + I(y)}.

The fact that u is an element of dom s implies that Eu 6= ∅. Let x be an arbitrary element
in Eu. Since H̃(x) = u and I(x) = −s(u), the display implies that

〈β, H̃(x)〉 + I(x) = inf
y∈X

{〈β, H̃(y)〉 + I(y)}

and thus that x ∈ Eβ. Since x is an arbitrary element in Eu, it follows that Eu ⊂ Eβ.
In order to complete the proof of part (a), it suffices to prove part (b). Thus suppose

that Eu ∩ Eβ 6= ∅ and let x be an arbitrary element in Eu ∩ Eβ. Since Eu 6= ∅, we have
u ∈ dom s. In addition, since H̃(x) = u, I(x) = −s(u), and

〈β, H̃(x)〉 + I(x) = inf
y∈X

{〈β, H̃(y)〉 + I(y)} = ϕ(β),

it follows that for all w ∈ IRσ

〈β, u〉 − s(u) = ϕ(β) = inf
w′∈IRσ

{〈β, w′〉 − s(w′)} ≤ 〈β, w〉 − s(w).

Therefore s(w) ≤ s(u) + 〈β, w − u〉 for all w ∈ IRσ, as claimed.

The next theorem is our first main result. Part (a) states that for a particular u ∈
dom s equivalence of ensembles holds if and only if u ∈ C. In Theorem 4.9 we make explicit
the connection between part (a) and the relationship between thermodynamic equivalence
of ensembles and equivalence of ensembles at the level of equilibrium macrostates. Part
(b) of the next theorem states that for a particular u ∈ dom s nonequivalence of ensembles
holds if and only if u 6∈ C. In particular, if s is not concave at some u ∈ dom ∂s∗∗, then
the ensembles are nonequivalent at the level of equilibrium macrostates. Theorem 4.4 was
inspired by, and greatly improves upon, the presentation on pages 857-859 of [19], which
treats the regularized point vortex model. While part (b) of Theorem 4.4 is related to
part (b) of Lemma 5.1 in [32], our Theorem 4.4 makes the nonequivalence of ensembles
more explicit.

Theorem 4.4. We assume Hypotheses 2.1 and 2.2. For u ∈ dom s the following conclu-

sions hold.

(a) u ∈ C if and only if Eu ⊂ Eβ for some β ∈ IRσ.

(b) u 6∈ C if and only if Eu ∩ Eβ = ∅ for all β ∈ IRσ.
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Proof. (a) This is an immediate consequence of part (a) of Lemma 4.3.
(b) If u 6∈ C, then for any β ∈ IRσ the inequality s(w) ≤ s(u) + 〈β, w − u〉 does not

hold for all w ∈ IRσ. Part (b) of Lemma 4.3 implies that Eu ∩ Eβ = ∅ for all β ∈ IRσ. To
show the converse, assume that Eu ∩Eβ = ∅ for all β ∈ IRσ and that u ∈ C. But if u ∈ C,
then part (a) of Lemma 4.3 implies that Eu ⊂ Eβ for some β ∈ IRσ. This contradiction
shows that u 6∈ C, completing the proof.

In the next proposition we refine part (a) of Theorem 4.4 by specifying the set of β
for which Eu ⊂ Eβ.

Proposition 4.5. We assume Hypotheses 2.1 and 2.2. Then for u ∈ C, Eu ⊂ Eβ for all

β ∈ ∂s∗∗(u) and Eu ∩ Eβ = ∅ for all β 6∈ ∂s∗∗(u).

Proof. For u ∈ C, part (b) of Lemma 4.1 implies that s(u) = s∗∗(u) and ∂s∗∗(u) 6= ∅.
If β ∈ ∂s∗∗(u), then part (a) of the same lemma implies that s(w) ≤ s(u) + 〈β, w − u〉
for all w ∈ IRσ. Part (a) of Lemma 4.3 then implies that Eu ⊂ Eβ. This proves the
first half of the proposition. On the other hand, if β 6∈ ∂s∗∗(u), then it is not true that
s(w) ≤ s(u) + 〈β, w− u〉 for all w ∈ IRσ [Lem. 4.1(a)]. It follows from part (b) of Lemma
4.3 that Eu ∩ Eβ = ∅.

Theorem 4.4 considers u ∈ dom s, proving that partial or full equivalence of ensembles
holds if and only if u ∈ C. The next theorem is our second main result. It shifts focus
from u ∈ dom s to β ∈ IRσ, proving that every set Eβ of canonical equilibrium macrostates
is a disjoint union of Eu for u in a particular index set that depends on β.

Theorem 4.6. We assume Hypotheses 2.1 and 2.2. Then for all β ∈ IRσ, H̃(Eβ) ⊂ dom s
and

Eβ =
⋃

u∈H̃(Eβ)

Eu.

The sets Eu, u ∈ H̃(Eβ), are nonempty and disjoint.

Proof. Let x be an arbitrary element in Eβ and define ũ
.
= H̃(x). Since Iβ(x) = 0, we

have
I(x) + 〈β, H̃(x)〉 = inf

y∈X
{I(y) + 〈β, H̃(y)〉} <∞,

and so s(ũ) ≥ −I(x) > −∞. Thus ũ ∈ dom s. Because x is an arbitrary element in Eβ,
this proves that H̃(Eβ) ⊂ dom s. Since ũ ∈ dom s, E ũ can be characterized as the set of
x ∈ X satisfying H̃(x) = ũ and I(x) = −s(ũ).

We now prove that x ∈ E ũ. Since x ∈ Eβ, it follows that for any y ∈ X

I(x) + 〈β, ũ〉 = I(x) + 〈β, H̃(x)〉 ≤ I(y) + 〈β, H̃(y)〉,

and thus for any y ∈ X satisfying H̃(y) = ũ, we have I(x) ≤ I(y). This implies that

I(x) ≤ inf{I(y) : y ∈ X , H̃(y) = ũ} = −s(ũ) ≤ I(x),
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and so I(x) = −s(ũ). It follows that x ∈ E ũ. Since x is an arbitrary element in Eβ, we
have shown that

Eβ ⊂
⋃

u∈H̃(Eβ)

Eu.

In order to prove the reverse inclusion, we show that for any u ∈ H̃(Eβ) we have
Eu ⊂ Eβ. Any such u has the form u = H̃(y) for some y ∈ Eβ. From our work in the
preceding two paragraphs we know that u ∈ dom s and y ∈ Eu. Thus y ∈ Eu ∩ Eβ. Since
Eu ∩ Eβ 6= ∅, it follows from Theorem 4.4 that Eu ⊂ Eβ. This completes the proof of the
display in the theorem.

The sets Eu, u ∈ H̃(Eβ), are nonempty since any such u lies in dom s. The sets are
also disjoint since for u 6= u′, x ∈ Eu ∩ Eu

′

implies that H̃(x) equals both u and u′. The
proof of the theorem is complete.

The following useful corollary states that when Eβ consists of a unique point x, then
with ũ

.
= H̃(x), E ũ consists of the unique point x. This follows from Theorem 4.6 since

H̃(Eβ) = {H̃(x)}. The corollary sharpens the result on page 861 of [19], which needs the
additional hypotheses that s is strictly concave and essentially smooth in order to reach
the same conclusion.

Corollary 4.7. Suppose that Eβ = {x} for some β ∈ IRσ. Then E ũ = {x}, where

ũ
.
= H̃(x).

We now turn our attention to a criterion for full equivalence of ensembles, which is
stated in terms of the set T defined in (4.8). Part (a) of Theorem 4.4 states that for
a particular u ∈ dom s equivalence of ensembles holds if and only if u ∈ C. The next
theorem refines this by showing that full equivalence of ensembles holds if and only if
u ∈ T . Part (a) gives the sufficiency and part (b) the necessity.

Theorem 4.8. We assume Hypotheses 2.1 and 2.2. The following conclusions hold.

(a) If u ∈ T , then there exists β ∈ ∂s∗∗(u) such that Eu = Eβ.
(b) If u ∈ C \T , then Eu ( Eβ for all β ∈ ∂s∗∗(u) and Eu∩Eβ = ∅ for all β 6∈ ∂s∗∗(u).

Proof. (a) If u ∈ T , then there exists β ∈ IRσ such that s(w) < s(u) + 〈β, w − u〉 for all
w 6= u. Part (a) of Lemma 4.3 implies that Eu ⊂ Eβ. Suppose that Eu is a proper subset
of Eβ. Then Theorem 4.6 implies the existence of u′ 6= u such that Eu

′

6= ∅ and Eu
′

⊂ Eβ,
and part (a) of Lemma 4.3 yields

s(w) ≤ s(u′) + 〈β, w − u′〉 for all w ∈ IRσ.

Setting w = u and using the fact that s(u′) < s(u) + 〈β, u′ − u〉, we see that

s(u) ≤ s(u′) + 〈β, u− u′〉 < s(u) + 〈β, u′ − u〉 + 〈β, u− u′〉 = s(u).

This contradiction shows that the assumption that Eu is a proper subset of Eβ is false.
The proof of part (a) is complete.
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Eu ∩ Eβ = ∅
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[Thm. 4.4(b)]

u 6∈ C





u ∈ dom s

(b) There are three possibilities for u ∈ dom s. The two branches on the left lead to
equivalence results, whereas the other branch leads to a nonequivalence result. The
sets C and T are defined in (4.7) and (4.8).

Figure 1: Equivalence and nonequivalence of ensembles.

(b) For u ∈ C \ T , Proposition 4.5 implies that Eu ⊂ Eβ for all β ∈ ∂s∗∗(u) and
Eu ∩ Eβ = ∅ for all β 6∈ ∂s∗∗(u). We now show that for any β ∈ ∂s∗∗(u), Eu is a proper
subset of Eβ. Since Eu ⊂ Eβ, part (a) of Lemma 4.3 implies that s(w) ≤ s(u) + 〈β, w− u〉
for all w ∈ IRσ. Since u 6∈ T , there exists u′ 6= u such that s(u′) = s(u) + 〈β, u′ − u〉.
Then for all w ∈ IRσ

s(w) ≤ s(u) + 〈β, w − u〉 = s(u′) + 〈β, w− u′〉.

It now follows from part (a) of Lemma 4.3 that Eu
′

6= ∅ and Eu
′

⊂ Eβ. Thus Eu is a proper
subset of Eβ, as claimed.

We recall that thermodynamic equivalence of ensembles is said to hold when s is con-
cave on IRσ. The next theorem addresses the issue of how thermodynamic equivalence of
ensembles mirrors equivalence of ensembles at the level of equilibrium macrostates. Part
(a) shows that thermodynamic equivalence is a sufficient condition for macroscopic equiv-
alence to hold for all u ∈ dom ∂s. Since when s is concave on IRσ we have ri(dom s) ⊂
dom ∂s ⊂ dom s, it follows that thermodynamic equivalence is a sufficient condition for
macroscopic equivalence to hold for all u ∈ dom s except possibly for relative boundary
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points. Part (b) proves a partial converse to (a). In part (c) we point out that thermo-
dynamic equivalence is equivalent to macroscopic equivalence under an extra hypothesis
on the domains of s, s∗∗, and ∂s∗∗. The proof of the theorem follows readily from our
previous results. The theorem is related to Lemma 6.2 and Theorem 6.1 in [32].

Theorem 4.9. (a) Assume that s is concave on IRσ. Then for all u ∈ dom ∂s, Eu ⊂ Eβ
for some β ∈ ∂s(u). Thus, thermodynamic equivalence of ensembles implies equivalence

of ensembles at the level of equilibrium macrostates for all u ∈ dom ∂s.
(b) Assume that dom s = dom s∗∗ and that for all u ∈ dom s there exists β ∈ IRσ such

that Eu ⊂ Eβ. Then s is concave on IRσ. Thus, under the hypothesis that dom s = dom s∗∗,
equivalence of ensembles at the level of equilibrium macrostates for all u ∈ dom s implies

thermodynamic equivalence of ensembles.

(c) Assume that dom s = dom s∗∗ = dom ∂s∗∗. Then thermodynamic equivalence of

ensembles holds if and only if the ensembles are equivalent at the level of equilibrium

macrostates.

Proof. (a) If s is concave on IRσ, then s = s∗∗ on IRσ and C = dom ∂s∗∗ = dom ∂s [Lem.
4.1(b)]. Part (a) of Theorem 4.3 completes the proof of part (a).

(b) The hypotheses imply that any element of dom s is an element of C, which in
turn is a subset of Γ

.
= {u ∈ IRσ : s(u) = s∗∗(u)}. It follows that s and s∗∗ agree on

dom s = dom s∗∗ and thus that s is concave on IRσ.
(c) This follows from parts (a) and (b).

With Theorem 4.9 the presentation of the main results in this section is complete. We
end this section by giving two additional theorems in which we explore further relation-
ships involving Eβ, E

u, and the thermodynamic functions ϕ and s.
In part (a) of the next theorem we refine Theorem 4.6 by proving that Eβ =

⋃

u∈∂ϕ(β)∩Γ E
u,

where ∂ϕ(β) denotes the superdifferential at β of the concave function ϕ and, as intro-
duced in Lemma 4.1, Γ

.
= {u ∈ IRσ : s(u) = s∗∗(u)}. This in turn allows us to give, in

part (b), a necessary and sufficient condition for the differentiability of ϕ at a point β.
Part (c) is a special case of part (b).

Theorem 4.10. We assume Hypotheses 2.1 and 2.2. The following conclusions hold.

(a) For all β ∈ IRσ

Eβ =
⋃

u∈H̃(Eβ)

Eu =
⋃

u∈∂ϕ(β)∩Γ

Eu.

(b) ϕ is differentiable at β if and only if both Eβ = Eu for some u and ∂ϕ(β) ⊂ Γ.

(c) If s is concave on IRσ, then ϕ is differentiable at β if and only if Eβ = Eu for some

u.

Proof. (a) It follows from part (a) of Lemma 4.3 and part (a) of Lemma 4.1 that

Eu 6= ∅ and Eu ⊂ Eβ if and only if s(u) = s∗∗(u) and β ∈ ∂s∗∗(u).
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Since β ∈ ∂s∗∗(u) if and only if u ∈ ∂s∗(β) = ∂ϕ(β) [45, p. 218], it follows that

Eu 6= ∅ and Eu ⊂ Eβ if and only if u ∈ ∂ϕ(β) ∩ Γ. (4.11)

Thus
⋃

u∈∂ϕ(β)∩Γ

Eu ⊂ Eβ.

We complete the proof of part (a) by showing that we have equality in this display.
By Theorem 4.6 Eβ is a disjoint union of Eu for u ∈ H̃(Eβ) ⊂ dom s. Hence for each
u ∈ H̃(Eβ), Eu 6= ∅ and Eu ⊂ Eβ. Thus (4.11) implies that H̃(Eβ) ⊂ ∂ϕ(β) ∩ Γ. We
conclude that

⋃

u∈∂ϕ(β)∩Γ

Eu ⊂ Eβ =
⋃

u∈H̃(Eβ)

Eu ⊂
⋃

u∈∂ϕ(β)∩Γ

Eu,

and therefore
⋃

u∈∂ϕ(β)∩Γ E
u = Eβ.

(b) We first assume that ϕ is differentiable at β. Since by part (a) ∂ϕ(β) ∩ Γ 6= ∅
for any β, the differentiability of ϕ at β implies that ∂ϕ(β) = {∇ϕ(β)} ⊂ Γ and that
Eβ = E∇ϕ(β). We now assume that Eβ = Eu for some u and ∂ϕ(β) ⊂ Γ. Since part (a)
implies that ∂ϕ(β) ∩ Γ = {u}, we conclude that ∂ϕ(β) = ∂ϕ(β) ∩ Γ = {u} and therefore
that ϕ is differentiable at β.

(c) This follows from part (b) since the concavity of s on IRσ implies that Γ = IRσ,
and so ∂ϕ(β) ⊂ Γ is always true.

The next theorem is the final result in this section. Under the hypothesis that s is
concave on IRσ, part (a) gives a simpler form of the representation in part (a) of Theorem
4.10. Part (b) is a partial converse of part (a).

Theorem 4.11. We assume Hypotheses 2.1 and 2.2. The following conclusions hold.

(a) Assume that s is concave on IRσ. Then for all β ∈ IRσ

Eβ =
⋃

u∈H̃(Eβ)

Eu =
⋃

u∈∂ϕ(β)

Eu.

(b) Now assume that for all β ∈ IRσ

Eβ =
⋃

u∈∂ϕ(β)

Eu.

Then s is a finite concave function on any convex subset of ri(dom s).

Proof. (a) Since s is concave on IRσ, Γ equals IRσ and thus ∂ϕ(β) ∩ Γ = ∂ϕ(β) for all
β ∈ IRσ. Hence part (a) follows from part (a) of Theorem 4.10.

(b) Since by definition Eu = ∅ for all u 6∈ dom s, it follows from the hypothesis in part
(b) and from part (a) of Theorem 4.10 that for all β ∈ IRσ

Eβ =
⋃

u∈∂ϕ(β)∩dom s

Eu =
⋃

u∈∂ϕ(β)∩Γ

Eu.
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Thus ∂ϕ(β) ∩ dom s = ∂ϕ(β) ∩ Γ. Taking the union over all β ∈ IRσ yields

⋃

β∈IRσ

∂ϕ(β) ∩ dom s =
⋃

β∈IRσ

∂ϕ(β) ∩ Γ ⊂ Γ.

By standard duality theory for upper semicontinuous, concave functions on IRσ [45, p.
218],

⋃

β∈IRσ ∂ϕ(β) = dom ∂s∗∗. Thus

(dom ∂s∗∗) ∩ (dom s) ⊂ Γ.

Since ri(dom s) ⊂ ri(dom s∗∗) ⊂ dom ∂s∗∗, we conclude that ri(dom s) ⊂ Γ and therefore
that s is concave on any convex subset of ri(dom s). The proof of the theorem is complete.

In the next section we extend the large deviation theorems in Sections 2 and 3 and
the duality theorems in the present section to the study of mixed ensembles.
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5 Mixed Ensembles

In broad terms the canonical ensemble differs from the microcanonical ensemble by the
manner in which the dynamical invariants are incorporated in the respective probability
measures: exponentiation in the former ensemble and conditioning in the latter ensemble.
In Section 5.1 we define two classes of mixed ensembles, a mixed canonical-microcanonical
ensemble and a mixed microcanonical-canonical ensemble, which differ only in the order
in which the exponentiation and the conditioning are performed. In part (b) of Theorem
5.1.1 we show that with respect to both of these ensembles the hidden process Yn satisfies
the large deviation principle with the same rate function. Hence the sets of equilibrium
macrostates for both of these ensembles are the same. In Section 5.2 we present complete
equivalence and nonequivalence results relating the sets of equilibrium macrostates for
the mixed and the pure canonical ensembles. In Section 5.3, we do the same for the
sets of equilibrium macrostates for the mixed and the pure microcanonical ensembles.
These results will be applied in future work to a number of problems, including soliton
turbulence for the nonlinear Schrödinger equation [17].

5.1 Properties of the Mixed Ensembles

The definitions of the mixed ensembles involve quantities introduced in Hypotheses 2.1
and 2.2. We shall use the notation Can(Hn;Pn)β to denote the canonical ensemble Pn,β,
which is defined in (2.1), and the notation Micro(Hn;Pn)

u,r to denote the microcanonical
ensemble P u,r

n , which is defined in (3.4). The LDP’s for Yn with respect to the canonical
ensemble and with respect to the microcanonical ensemble are given in Theorems 2.4 and
3.2, respectively. The respective rate functions are

Iβ(x)
.
= I(x) + 〈β, H̃(x)〉 − inf

y∈X
{I(y) + 〈β, H̃(y)〉}

and for u ∈ dom J

Iu(x)
.
=

{

I(x) − J(u) if H̃(x) = u,
∞ otherwise.

In the sequel we shall use the following alternate formula for Iu:

Iu(x) = I({x} ∩ H̃−1({u})) − J(u).

Analogous formulas will arise in the study of the mixed ensembles.
In order to introduce the mixed ensembles, we assume that σ ≥ 2. Let τ be an integer

satisfying 1 ≤ τ ≤ σ and consider decompositions of Hn and of H̃ defined as follows:

Hn = (H1
n, H

2
n), where H1

n
.
= (Hn,1, . . . , Hn,τ) and H2

n
.
= (Hn,τ+1, . . . , Hn,σ),

H̃ = (H̃1, H̃2), where H̃1 .
= (H̃1, . . . , H̃τ ) and H̃2 .

= (H̃τ+1, . . . , H̃σ).

Writing β = (β1, β2) ∈ IRτ × IRσ−τ and u = (u1, u2) ∈ IRτ × IRσ−τ , we define

Can(H1
n, H

2
n;Pn)β1,β2(dω)

.
= Can(Hn;Pn)β(dω)

=
1

Zn(β1, β2)
exp[−〈β1, H1

n(ω)〉 − 〈β2, H2
n(ω)〉]Pn(dω),
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where Zn(β
1, β2)

.
= Zn(β), and we define

Micro(H1
n, H

2
n;Pn)

u1,u2,r(dω)
.
= Micro(Hn;Pn)

u,r(dω)

= Pn(dω|H
1
n ∈ {u1}(r), H2

n ∈ {u2}(r)).

The function J(u)
.
= inf{I(x) : x ∈ X , H̃(x) = u} plays a key role in the large deviation

analysis of the microcanonical ensemble. We rewrite this function as

J(u1, u2)
.
= inf{I(x) : x ∈ X , H̃1(x) = u1, H̃2(x) = u2}. (5.1.1)

The innovation of the present subsection is to consider the asymptotic properties of
two mixed ensembles, both at the level of thermodynamic functions and at the level
of equilibrium macrostates. We define a mixed canonical-microcanonical ensemble by
replacing the measure Pn in the canonical ensemble Can(H1

n;Pn)β1 by the microcanonical

ensemble Micro(H2
n;Pn)

u2,r. For u2 ∈ IRσ−τ and β1 ∈ IRτ , the resulting measure is given
by

Can(H1
n; Micro(H2

n;Pn)
u2,r)β1(dω)

.
=

1

Zn(β1, {u2}(r))
exp[−〈β1, H1

n(ω)〉]Pn(dω|H
2
n ∈ {u2}(r)),

where

Zn(β
1, {u2}(r))

.
=

∫

Ωn

exp[−〈β1, H1
n(ω)〉]Pn(dω|H

2
n ∈ {u2}(r)).

By a similar verification as in the paragraph after Proposition 3.1, the microcanonical en-
semble Micro(H2

n;Pn)
u2,r, and thus this mixed ensemble, are well defined for all sufficiently

large n provided u2 lies in the domain of

J2(u2)
.
= inf{I(x) : x ∈ X , H̃2(x) = u2}. (5.1.2)

In an analogous way, we define a mixed microcanonical-canonical ensemble by replac-
ing the measure Pn in the microcanonical ensemble Micro(H2

n;Pn)
u2,r by the canonical

ensemble Can(Hn;Pn)β1 . For β1 ∈ IRτ and u2 ∈ IRσ−τ , the resulting measure is given by

Micro(H2
n; Can(H1

n;Pn)β1)u
2,r(dω)

.
= Qn,β1(dω|H2

n ∈ {u2}(r)),

where

Qn,β1(dω)
.
=

1

Zn(β1)
exp[−〈β1, H1

n(ω)〉]Pn(dω).

This mixed ensemble is well defined for all sufficiently large n provided u2 lies in the
domain of the function Jβ1 that stands in the same relationship to the mixed ensemble
as the function J in (5.1.1) stands to the microcanonical ensemble. Since J is defined in
terms of I, which is the rate function in the LDP for Yn with respect to Pn, Jβ1 is defined in
terms of the rate function for Yn with respect to the canonical ensemble Can(H1

n;Pn)anβ1.
By Theorem 2.4, this rate function is given by

Iβ1(x)
.
= I(x) + 〈β1, H̃1(x)〉 − inf

y∈X
{I(y) + 〈β1, H̃1(y)〉}.
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It follows that

Jβ1(u2)
.
= inf{Iβ1(x) : x ∈ X , H̃2(x) = u2}

= inf{I(x) + 〈β1, H̃1(x)〉 : x ∈ X , H̃2(x) = u2} (5.1.3)

− inf
y∈X

{I(y) + 〈β1, H̃1(y)〉}.

By the discussion earlier in this paragraph, the mixed ensemble Micro(H2
n; Can(H1

n;Pn)β1)u
2,r

is well-defined for all sufficiently large n provided u2 lies in the domain of Jβ1 . Since H̃1(x)
is finite for all x ∈ X , u2 ∈ dom Jβ1 if and only if u2 ∈ dom J2. By the same proof as that

of Proposition 3.1, with respect to Pn, the sequences H̃2(Yn) and H2
n satisfy the LDP on

IRσ−τ with rate function J2. As a consequence, dom J2 is nonempty as is dom Jβ1 .
We recall from Section 4 that

s(u)
.
= −J(u) = − inf{I(x) : x ∈ X , H̃(x) = u}

defines the microcanonical entropy and that its Legendre-Fenchel transform gives the
canonical free energy. Both functions appear in relationships involving Eβ and Eu that
appear in that section. In an analogous way, for β1 ∈ IRτ and u2 ∈ IRσ−τ , we define the
entropy with respect to the mixed ensemble Micro(H2

n; Can(H1
n;Pn)anβ1)u

2,r to be

sβ1(u2)
.
= −Jβ1(u2). (5.1.4)

This entropy and the associated free energy will appear in the results on equivalence and
nonequivalence of ensembles to be given in Section 5.2.

In order to complete the definitions of the various ensembles, we also consider the pure
ensembles

Can(H1
n; Can(H2

n;Pn)β2)β1 and Micro(H1
n; Micro(H2

n;Pn)
u2,r)u

1,r,

which are defined similarly as above. We omit the simple calculation showing that for all
n and r

Can(H1
n; Can(H2

n;Pn)β2)β1(dω) = Can(H1
n, H

2
n;Pn)β1,β2(dω) (5.1.5)

and

Micro(H1
n; Micro(H2

n;Pn)
u2,r)u

1,r(dω) = Micro(H1
n, H

2
n;Pn)

u1,u2,r(dω). (5.1.6)

On the other hand, for all n and r the mixed canonical-microcanonical ensemble and the
mixed microcanonical-canonical ensemble are different. In the next theorem we record the
LDP’s satisfied by Yn with respect to the various ensembles introduced in this subsection.
The pleasant surprise is that although the two mixed ensembles are different for all n and
r, with respect to each of them, with β1 replaced by anβ

1, Yn satisfies the LDP with the
identical rate function.

Before stating the theorem, we define the rate functions for each ensemble. For β =
(β1, β2) ∈ IRτ × IRσ−τ , u2 ∈ dom J2, and u = (u1, u2) ∈ dom J , we define the following
functions mapping X into [0,∞]:

Iβ1,β2(x)
.
= I(x) + 〈β1, H̃1(x)〉 + 〈β2, H̃2(x)〉 (5.1.7)

− inf
y∈X

{I(y) + 〈β1, H̃1(y)〉 + 〈β2, H̃2(y)〉},
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Iu
2

β1 (x)
.
= I({x} ∩ (H̃2)−1({u2})) + 〈β1, H̃1(x)〉 (5.1.8)

− inf{I(y) + 〈β1, H̃1(y)〉 : y ∈ X , H̃2(y) = u2},

and
Iu

1,u2

(x)
.
= I({x} ∩ (H̃1)−1({u1}) ∩ (H̃2)−1({u2})) − J(u1, u2). (5.1.9)

Theorem 5.1.1. We assume Hypotheses 2.1 and 2.2. For (β1, β2) ∈ IRτ × IRσ−τ the

following conclusions hold.

(a) With respect to the canonical ensemble Can(H1
n, H

2
n;Pn)anβ1,anβ2, Yn satisfies the

LDP on X with rate function Iβ1,β2 given in (5.1.7).
(b) Take u2 ∈ dom J2 [see (5.1.2)]. Both with respect to the mixed canonical-microcanonical

ensemble Can(H1
n; Micro(H2

n;Pn)
u2,r)anβ1 and with respect to the mixed microcanonical-

canonical ensemble Micro(H2
n; Can(H1

n;Pn)anβ1)u
2,r, Yn satisfies the LDP on X , in the

double limit n→ ∞ and r → 0, with rate function Iu
2

β1 given in (5.1.8).

(c) Take u = (u1, u2) ∈ dom J [see (5.1.1)]. With respect to the microcanonical en-

semble Micro(H1
n, H

2
n;Pn)

u1,u2,r, Yn satisfies the LDP on X , in the double limit n → ∞
and r → 0, with rate function Iu

1,u2

given in (5.1.9).

Proof. Part (a) is proved in Theorem 2.4, and part (c) is proved in Theorem 3.2. In
part (b) we first prove the LDP for Yn with respect to Micro(H2

n;Can(H1
n;Pn)anβ1)u

2,r.
Theorem 2.4 implies that with respect to Can(H1

n;Pn)anβ1, Yn satisfies the LDP with rate
function

Iβ1(x)
.
= I(x) + 〈β1, H̃1(x)〉 − inf

y∈X
{I(y) + 〈β1, H̃1(y)}.

With Pn replaced by Can(H1
n;Pn)anβ1 and I replaced by Iβ1 , Theorem 3.2 guarantees

that if u2 ∈ dom Jβ1 = dom J2, then with respect to Micro(H2
n;Can(H1

n;Pn)anβ1)u
2,r, Yn

satisfies the LDP, in the double limit n→ ∞ and r → 0, with rate function

(Iβ1)u
2

(x)
.
= Iβ1({x} ∩ (H̃2)−1({u2})) − inf{Iβ1(y) : y ∈ X , H̃2(y) = u2}.

Substituting the definition of Iβ1 , we see that

(Iβ1)u
2

(x) = I({x} ∩ (H̃2)−1({u2})) + 〈β1, H̃1(x)〉

− inf{I(y) + 〈β1, H̃1(y)〉 : y ∈ X , H̃2(y) = u2}.

This is the function Iu
2

β1 defined in (5.1.8). We have proved that with respect to Micro(H2
n;

Can(H1
n;Pn)anβ1)u

2,r, Yn satisfies the LDP, in the double limit n → ∞ and r → 0, with

rate function Iu
2

β1 .

We next consider the LDP for Yn with respect to Can(H1
n; Micro(H2

n;Pn)
u2,r)anβ1.

Since u2 ∈ dom J2, Theorem 3.2 implies that with respect to Micro(H2
n;Pn)

u2

, Yn satisfies
the LDP, in the double limit n→ ∞ and r → 0, with rate function

Iu
2

(x)
.
= I({x} ∩ (H̃2)−1({u2})) − J2(u2).
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One can easily modify the proof of Theorem 2.4 to handle the situation in which Pn
is replaced by a doubly indexed class of probability measures such as Micro(H2

n;Pn)
u2,r

with the property that with respect to these measures Yn satisfies the LDP. With this
modification, replacing Pn by Micro(H2

n;Pn)
u2,r and I by Iu

2

, we see that with respect
to Can(H1

n; Micro(H2
n;Pn)

u2,r)anβ1 , Yn satisfies the LDP, in the double limit n → ∞ and
r → 0, with rate function

(Iu
2

)β1(x)
.
= Iu

2

(x) + 〈β1, H̃1(x)〉 − inf
y∈X

{Iu
2

(y) + 〈β1, H̃1(y)〉}

= I({x} ∩ (H̃2)−1({u2})) + 〈β1, H̃1(x)〉

− inf{I(y) + 〈β1, H̃1(y)〉 : y ∈ X , H̃2(y) = u2}.

This is the function Iu
2

β1 defined in (5.1.8). We have shown that with respect to Can(H1
n;

Micro(H2
n;Pn)

u2,r)anβ1 , Yn satisfies the LDP, in the double limit n → ∞ and r → 0, with

rate function Iu
2

β1 . The proof of the theorem is complete.

In the next two subsections, we consider equivalence and nonequivalence results for
the ensembles whose LDP’s are derived in Theorem 5.1.1. These results are derived as
immediate consequences of our work in Section 4, where equivalence and nonequivalence
results for the canonical and microcanonical ensembles were derived.

5.2 Equivalence and Nonequivalence of the Canonical and Mixed

Ensembles

In this subsection we study, at the level of equilibrium macrostates, the equivalence and
nonequivalence of the canonical ensemble Can(H1

n, H
2
n;Pn)anβ1,anβ2 and the mixed ensem-

ble Micro(H2
n; Can(H1

n;Pn)anβ1)u
2,r. The parameters β1, β2, and u2 satisfy β1 ∈ IRτ ,

β2 ∈ IRσ−τ , and u2 ∈ dom J2, where

J2(u2)
.
= inf{I(x) : H̃2(x) = u2}.

By a similar verification as in the paragraph after Proposition 3.1, this condition on
u2 guarantees that the mixed ensemble is well defined for all sufficiently large n. The
relationships between the sets of equilibrium macrostates for the two ensembles follow
immediately from Theorems 4.4, 4.6, and 4.8 with minimal changes in proof. Hence we
shall only summarize them in Figure 2.

By Theorem 5.1.1, for (β1, β2) ∈ IRτ ×IRσ−τ , with respect to Can(H1
n, H

2
n; Pn)anβ1,anβ2

Yn satisfies the LDP with rate function

Iβ1,β2(x)
.
= I(x) + 〈β1, H̃1(x)〉 + 〈β2, H̃2(x)〉 (5.2.1)

− inf
y∈X

{I(y) + 〈β1, H̃1(y)〉 + 〈β2, H̃2(y)〉}.

In addition, for (β1, u2) ∈ IRτ × dom J2, with respect to Micro(H2
n; Can(H1

n; Pn)anβ1)u
2,r

Yn satisfies the LDP with rate function

Iu
2

β1 (x)
.
= I({x} ∩ (H̃2)−1({u2})) + 〈β1, H̃1(x)〉) − ψu

2

β1 , (5.2.2)
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where
ψβ1(u2)

.
= inf{I(y) + 〈β1, H̃1(y)〉 : y ∈ X , H̃2(y) = u2}.

For β1 ∈ IRτ , β2 ∈ IRσ−τ , and u2 ∈ dom J2, we define the corresponding sets of equilibrium
macrostates

Eβ1,β2

.
= {x ∈ X : Iβ1,β2(x) = 0}

and

Eu
2

β1

.
= {x ∈ X : Iu

2

β1 (x) = 0}

= {x ∈ X : H̃2(x) = u2, I(x) + 〈β1, H̃1(x)〉 = ψu
2

β1}.

As the sets of points at which the corresponding rate functions attain their minimum of
0, both Eβ1,β2 and Eu

2

β1 are nonempty, compact subsets of X for β1 ∈ IRτ , β2 ∈ IRσ−τ , and

u2 ∈ dom J2. The main purpose of this subsection is to record the relationships between
these sets.

Before doing so, we point out a concentration property, relative to the set Eu
2

β1 , of the

distributions of Yn with respect to the mixed ensemble Micro(H2
n; Can(H1

n;Pn)anβ1)u
2,r.

This concentration property is an immediate consequence of the LDP proved in part (b)
of Theorem 5.1.1. It justifies calling Eu

2

β1 the set of equilibrium macrostates with respect to
the mixed ensemble. This concentration property is analogous to those for the canonical
ensemble and for the microcanonical ensemble given in part (c) of Theorem 2.4 and in
part (b) of Theorem 3.5; the proof is omitted.

Theorem 5.2.1. We assume Hypotheses 2.1 and 2.2. For β1 ∈ IRτ , u2 ∈ dom J2, and

A any Borel subset of X whose closure Ā satisfies Ā ∩ Eu
2

β1 = ∅, we have Iu
2

β1 (Ā) > 0. In

addition, there exists r0 ∈ (0, 1) and for all r ∈ (0, r0] there exists Cr <∞ such that

Micro(H2
n; Can(H1

n;Pn)anβ1)u
2,r{Yn ∈ A} ≤ Cr exp[−anI

u2

β1 (Ā)/2] → 0 as n→ ∞.

As in Theorem 3.6, one can also study compactness and weak limit properties of the
distributions of Yn with respect to Micro(H2

n; Can(H1
n;Pn)anβ1)u

2,r. We shall omit this
topic.

We return to the relationships between Eβ1,β2 and Eu
2

β1 . Since for each n

Can(H1
n, H

2
n;Pn)β1,β2 and Can(H2

n; Can(H1
n;Pn)β1)β2

are equal, we can derive the relationships between these sets of equilibrium macrostates by
applying the results of Section 4 to the canonical ensemble and microcanonical ensemble

Can(H2
n;Qn)anβ2 and Micro(H2

n;Qn)
u2

, with Qn
.
= Can(H1

n;Pn)anβ1.

To this end, we introduce the relevant thermodynamic functions. With respect to Can(H2
n;

Can(H1
n;Pn)anβ1)anβ2 the free energy is given by

ϕβ1(β2) = − lim
n→∞

1

an
log

∫

Ωn

exp[−an〈β
2, H2

n〉] d
(

Can(H1
n;Pn)anβ1

)

(5.2.3)

= inf
x∈X

{I(x) + 〈β1, H̃1(x)〉 + 〈β2, H̃2(x)〉} − ϕ1(β1),
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Nonequivalence:

Eu
2

β1 ∩ Eβ1,β2 = ∅

∀β2 ∈ IRσ−τ

u2 6∈ Cβ1





(β1, u2) ∈ IRτ × dom sβ1

(b) For β1 ∈ IRτ , there are three possibilities for u2 ∈ dom sβ1 . The two branches on the
left lead to equivalence results, whereas the other branch leads to a nonequivalence
result. The sets Cβ1 and Tβ1 are defined in the last paragraph of Section 5.2.

Figure 2: Equivalence and nonequivalence of canonical and mixed ensembles.

where

ϕ1(β1)
.
= − lim

n→∞

1

an
log

∫

Ωn

exp[−an〈β
1, H1

n〉] dPn (5.2.4)

= inf
y∈X

{I(y) + 〈β1, H̃1(y)〉}.

The function ϕβ1 is finite, concave, and continuous on IRσ−τ . In (5.1.4) we identified the

entropy with respect to Micro(H2
n; Can(H1

n;Pn)anβ1)u
2,r to be

sβ1(u2)
.
= −Jβ1(u2)

= − inf{Iβ1(x) : x ∈ X , H̃2(x) = u2} (5.2.5)

= − inf{I(x) + 〈β1, H̃1(x)〉 : x ∈ X , H̃2(x) = u2} + ϕ1(β1);

u2 ∈ dom sβ1 if and only if u2 ∈ dom J2.
As in Section 4, whether or not the entropy sβ1 is concave on IRσ−τ , its Legendre-

Fenchel transform s∗β1 equals ϕβ1 . If in addition sβ1 is concave on IRσ−τ , then this formula
can be inverted to give sβ1 = ϕ∗

β1 .

For β1 ∈ IRτ the relationships between Eβ1,β2 and Eu
2

β1 are summarized in Figure 2.
These relationships depend on two sets that are the analogues of the sets C and T defined
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in (4.7) and (4.8). For β1 ∈ IRτ we define Cβ1 to be the set of u2 ∈ IRσ−τ for which there
exists β2 ∈ IRσ−τ such that

sβ1(w) ≤ sβ1(u2) + 〈β2, w − u2〉 for all w ∈ IRσ−τ .

We also define Tβ1 to be the set of u2 ∈ IRσ−τ for which there exists β2 ∈ IRσ−τ such that

sβ1(w) < sβ1(u2) + 〈β2, w − u2〉 for all w 6= u2.

As in Lemma 4.1, it can be shown that Cβ1 = Γβ1 ∩ dom ∂s∗∗β1 , where Γβ1

.
= {u2 ∈ IRσ−τ :

sβ1(u2) = s∗∗β1(u2)}.

5.3 Equivalence and Nonequivalence of the Mixed and Micro-

canonical Ensembles

In this subsection we study, at the level of equilibrium macrostates, the equivalence
and nonequivalence of the mixed ensemble Can(H1

n; Micro(H2
n;Pn)

u2,r)anβ1 and the mi-

crocanonical ensemble Micro(H1
n, H

2
n;Pn)

u1,u2,r. The parameters β1, u1, and u2 satisfy
β1 ∈ IRτ , u2 ∈ dom J2, and (u1, u2) ∈ dom J , where

J2(u2)
.
= inf{I(x) : x ∈ X , H̃2(x) = u2}

and
J(u1, u2)

.
= inf{I(x) : x ∈ X , H̃1(x) = u1, H̃2(x) = u2}.

For any u1 and u2, J2(u2) ≤ J(u1, u2). Hence, if (u1, u2) ∈ dom J , then u2 ∈ dom J2. By a
similar verification as in the paragraph after Proposition 3.1, the condition that (u1, u2) ∈
dom J guarantees that both the mixed ensemble and the microcanonical ensemble are
well defined for all sufficiently large n. The relationships between the sets of equilibrium
macrostates for the two ensembles follow immediately from Theorems 4.4, 4.6, and 4.8
with minimal changes in proof. Hence we shall only summarize them in Figure 3.

By Theorem 5.1.1, for (β1, u2) ∈ IRτ×(dom J2), with respect to Can(H1
n; Micro(H2

n;Pn)
u2,r)anβ1

Yn satisfies the LDP with rate function

Iu
2

β1 (x)
.
= I({x} ∩ (H̃2)−1({u2})) + 〈β1, H̃1(x)〉 − ψu

2

β1 , (5.3.1)

where
ψu

2

β1

.
= inf{I(y) + 〈β1, H̃1(y)〉 : y ∈ X , H̃2(y) = u2}.

In addition, for (u1, u2) ∈ dom J , with respect to Micro(H1
n, H

2
n;Pn)

u1,u2,r Yn satisfies the
LDP with rate function

Iu
1,u2

(x)
.
= I({x} ∩ (H̃1)−1({u1}) ∩ (H̃2)−1({u2})) − J(u1, u2).

For β1 ∈ IRτ , u2 ∈ dom J2, and (u1, u2) ∈ dom J , we define the corresponding sets of
equilibrium macrostates

Eu
2

β1

.
= {x ∈ X : Iu

2

β1 (x) = 0}

= {x ∈ X : H̃2(x) = u2, I(x) + 〈β1, H̃1(x)〉 = ψu
2

β1}
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and

Eu
1,u2 .

= {x ∈ X : Iu
1,u2

(x) = 0}

= {x ∈ X : I(x) = J(u1, u2), H̃1(x) = u1, H̃2(x) = u2}.

As the sets of points at which the corresponding rate functions attain their minimum of
0, the set Eu

2

β1 , for β1 ∈ IRτ and u2 ∈ dom J2, and the set Eu
1,u2

, for (u1, u2) ∈ dom J ,
are nonempty and compact. The purpose of this subsection is to record the relationships
between these sets.

Since for (u1, u2) ∈ dom J and each n

Micro(H1
n, H

2
n;Pn)

u1,u2,r and Micro(H1
n; Micro(H2

n;Pn)
u2,r)u

1,r

are equal, we can derive the relationships between Eu
2

β1 and Eu
1,u2

by applying the results
of Section 4 to the canonical ensemble and microcanonical ensemble

Can(H1
n;Qn)anβ2 and Micro(H1

n;Qn)
u1,r, with Qn

.
= Micro(H2

n;Pn)
u2,r.

To this end, we introduce the relevant thermodynamic functions. By Theorem 3.2, for
u2 ∈ dom J2 the rate function in the LDP for Yn with respect to Micro(H2

n;Pn)
u2,r is

Iu
2

(x)
.
= I({x} ∩ (H̃2)−1({u2})) − J2(u2).

Hence by the Laplace principle, for u2 ∈ dom J2 the free energy with respect to the
ensemble Can(H1

n; Micro(H2
n;Pn)

u2,r)anβ1 is given by

ϕu
2

(β1) = − lim
n→∞

1

an
log

∫

Ωn

exp[−an〈β
1, H1

n〉] d
(

Micro(H2
n;Pn)

u2,r
)

= inf
x∈X

{Iu
2

(x) + 〈β1, H̃1(x)〉} (5.3.2)

= inf{I(x) + 〈β1, H̃1(x)〉 : x ∈ X , H̃2(x) = u2} − J2(u2).

The function ϕu
2

is finite, concave, and continuous on IRτ . For u2 ∈ dom J2 we define

Ju
2

(u1)
.
= inf{Iu

2

(x) : x ∈ X , H̃1(x) = u1}

= inf{I(x) : x ∈ X , H̃1(x) = u1, H̃2(x) = u2} − J2(u2) (5.3.3)

= J(u1, u2) − J2(u2).

With respect to Micro(H1
n; Micro(H2

n;Pn)
u2,r)u

1,r, for u2 ∈ dom J2 the entropy is given by

su
2

(u1)
.
= −Ju

2

(u1). (5.3.4)

We have u1 ∈ dom su
2

if and only if (u1, u2) ∈ dom J .
As in Section 4, whether or not su

2

is concave on IRτ , its Legendre-Fenchel transform
(su

2

)∗ equals ϕu
2

. If su
2

is concave on IRτ , then this formula can be inverted to give
su

2

= (ϕu
2

)∗ for all u1 ∈ IRτ .
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Partial Equivalence:

Eu
1,u2

( Eu
2

β1
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)∗∗(u1)
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(u2, u1) ∈ domJ2 × dom su
2

(b) For u2 ∈ domJ2, there are three possibilities for u1 ∈ dom su
2

. The two branches on
the left lead to equivalence results, whereas the other branch leads to a nonequiv-
alence result. The sets Cu2

and T u
2

are defined in the next to last paragraph of
Section 5.3.

Figure 3: Equivalence and nonequivalence of mixed and microcanonical ensembles.

For u2 ∈ dom J2 the relationships between Eu
2

β1 and Eu
1,u2

are summarized in Figure
3. These relationships depend on two sets that are the analogues of the sets C and T
defined in (4.7) and (4.8). For β1 ∈ IRτ we define Cu2

to be the set of u1 ∈ IRτ for which
there exists β1 ∈ IRτ such that

su
2

(w) ≤ su
2

(u1) + 〈β1, w − u1〉 for all w ∈ IRτ .

We also define T u
2

to be the set of u1 ∈ IRτ for which there exists β1 ∈ IRτ such that

su
2

(w) < su
2

(u1) + 〈β1, w − u1〉 for all w 6= u1.

As in Lemma 4.1, it can be shown that Cu2

= Γu
2

∩ dom ∂(su
2

)∗∗, where Γu
2 .

= {u1 ∈
IRτ : su

2

(u1) = (su
2

)∗∗(u1)}.
With Figure 3, we complete our presentation of the equivalence and nonequivalence

results for the mixed ensemble, the canonical ensemble, and the microcanonical ensemble.
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