107 research outputs found

    Heat capacity of Îą\alpha-GaN: Isotope Effects

    Full text link
    Until recently, the heat capacity of GaN had only been measured for polycrystalline powder samples. Semiempirical as well as \textit{first-principles} calculations have appeared within the past few years. We present in this article measurements of the heat capacity of hexagonal single crystals of GaN in the 20-1400K temperature range. We find that our data deviate significantly from the literature values for polycrystalline materials. The dependence of the heat capacity on the isotopic mass has also been investigated recently for monatomic crystals such as diamond, silicon, and germanium. Multi-atomic crystals are expected to exhibit a different dependence of these heat capacities on the masses of each of the isotopes present. These effects have not been investigated in the past. We also present \textit{first-principles} calculations of the dependence of the heat capacities of GaN, as a canonical binary material, on each of the Ga and N masses. We show that they are indeed different, as expected from the fact that the Ga mass affects mainly the acoustic, that of N the optic phonons. It is hoped that these calculations will encourage experimental measurements of the dependence of the heat capacity on isotopic masses in binary and more complex semiconductors.Comment: 12 pages, 5 Figures, submitted to PR

    A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy

    Get PDF
    Abstract Background Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting large-scale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. Results We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genome-wide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. Conclusions The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion

    A framework genetic map for \u3ci\u3eMiscanthus sinensis\u3c/i\u3e from RNAseq-based markers shows recent tetraploidy

    Get PDF
    Background: Miscanthus (subtribe Saccharinae, tribe Andropogoneae, family Poaceae) is a genus of temperate perennial C4 grasses whose high biomass production makes it, along with its close relatives sugarcane and sorghum, attractive as a biofuel feedstock. The base chromosome number of Miscanthus (x = 19) is different from that of other Saccharinae and approximately twice that of the related Sorghum bicolor (x = 10), suggesting largescale duplications may have occurred in recent ancestors of Miscanthus. Owing to the complexity of the Miscanthus genome and the complications of self-incompatibility, a complete genetic map with a high density of markers has not yet been developed. Results: We used deep transcriptome sequencing (RNAseq) from two M. sinensis accessions to define 1536 single nucleotide variants (SNVs) for a GoldenGate™ genotyping array, and found that simple sequence repeat (SSR) markers defined in sugarcane are often informative in M. sinensis. A total of 658 SNP and 210 SSR markers were validated via segregation in a full sibling F1 mapping population. Using 221 progeny from this mapping population, we constructed a genetic map for M. sinensis that resolves into 19 linkage groups, the haploid chromosome number expected from cytological evidence. Comparative genomic analysis documents a genomewide duplication in Miscanthus relative to Sorghum bicolor, with subsequent insertional fusion of a pair of chromosomes. The utility of the map is confirmed by the identification of two paralogous C4-pyruvate, phosphate dikinase (C4-PPDK) loci in Miscanthus, at positions syntenic to the single orthologous gene in Sorghum. Conclusions: The genus Miscanthus experienced an ancestral tetraploidy and chromosome fusion prior to its diversification, but after its divergence from the closely related sugarcane clade. The recent timing of this tetraploidy complicates discovery and mapping of genetic markers for Miscanthus species, since alleles and fixed differences between paralogs are comparable. These difficulties can be overcome by careful analysis of segregation patterns in a mapping population and genotyping of doubled haploids. The genetic map for Miscanthus will be useful in biological discovery and breeding efforts to improve this emerging biofuel crop, and also provide a valuable resource for understanding genomic responses to tetraploidy and chromosome fusion

    Isotope Effect for the Penetration Depth in Superconductors

    Full text link
    We show that various factors can lead to an isotopic dependence of the penetration depth δ\delta. Non-adiabaticity (Jahn-Teller crossing) leads to the isotope effect of the charge carrier concentration nn and, consequently, of δ\delta in doped superconductors such as the cuprates. A general equation relating the isotope coefficients of TcT_c and of δ\delta is presented for London superconductors. We further show that the presence of magnetic impurities or a proximity contact also lead to an isotopic dependence of δ\delta; the isotope coefficient turns out to be temperature dependent, β(T)\beta(T), in these cases. The existence of the isotope effect for the penetration depth is predicted for conventional as well as for high-temperature superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.

    Eliashberg-type equations for correlated superconductors

    Full text link
    The derivation of the Eliashberg -- type equations for a superconductor with strong correlations and electron--phonon interaction has been presented. The proper account of short range Coulomb interactions results in a strongly anisotropic equations. Possible symmetries of the order parameter include s, p and d wave. We found the carrier concentration dependence of the coupling constants corresponding to these symmetries. At low hole doping the d-wave component is the largest one.Comment: RevTeX, 18 pages, 5 ps figures added at the end of source file, to be published in Phys.Rev. B, contact: [email protected]

    Water Network Optimization with Wastewater Regeneration Models

    Get PDF
    The conventional water network synthesis approach greatly simplifies wastewater treatment units by using fixed recoveries, creating a gap for their applicability to industrial processes. This work describes a unifying approach combining various technologies capable of removing all the major types of contaminants through the use of more realistic models. The following improvements are made over the typical superstructure-based water network models. First, unit-specific shortcut models are developed in place of the fixed contaminant removal model to describe contaminant mass transfer in wastewater treatment units. Shortcut wastewater treatment cost functions are also incorporated into the model. In addition, uncertainty in mass load of contaminants is considered to account for the range of operating conditions. Furthermore, the superstructure is modified to accommodate realistic potential structures. We present a modified Lagrangean-based decomposition algorithm in order to solve the resulting nonconvex mixed-integer nonlinear programming (MINLP) problem efficiently. Several examples are presented to illustrate the effectiveness and limitations of the algorithm for obtaining the global optimal solutions.The authors would like to acknowledge financial support from the National Science Foundation for financial support under grant CBET-1437668, the program “Estancias de movilidad en el extranjero “Jose Castillejo” para jóvenes doctores” (JC2011-0051) of the Spanish Ministerio de Educación, and from the University of Alicante (GRE11-19)

    Thermal conductivity of high- T c superconductors

    Full text link
    This paper reviews existing data on the thermal conductivity of high- T c superconductors. Included are discussions of pristine polycrystalline high- T c ceramics, single crystal specimens, and high- T c materials structurally modified by substitution or by radiation damage. The thermal conductivity of high- T c superconductors is compared with that of conventional superconductors, and dramatic differences are found between the two families. Mechanisms of thermal conductivity applicable to high- T c perovskites are discussed and implications for theories of high- T c superconductivity are noted.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45121/1/10948_2004_Article_BF00617463.pd
    • …
    corecore