7,110 research outputs found

    Dual-frequency GPS survey for validation of a regional DTM and for the generation of local DTM data for sea-level rise modelling in an estuarine salt marsh

    Get PDF
    Global average temperatures have risen by an average of 0.07°C per decade over the last 100 years, with a warming trend of 0.13°C per decade over the last 50 years. Temperatures are predicted to rise by 2°C - 4.4°C by 2100 leading to global average sealevel rise (SLR) of 2 – 6mm per year (20 – 60cms in total) up to 2100 (IPCC 2007) with impacts for protected coastal habitats in Ireland. Estuaries are predominantly sedimentary environments, and are characterised by shallow coastal slope gradients, making them sensitive to even modest changes in sea-level. The Shannon estuary is the largest river estuary in Ireland and is designated as a Special Area of Conservation (SAC) under the EU Habitats Directive (EU 1992) providing protection for listed habitats within it, including estuarine salt marsh. Trends in Shannon estuary tidal data from 1877 – 2004 suggest an average upward SLR trend of 4 - 5mm/yr over this period. A simple linear extension of this historical trend would imply that local SLR will be in the region of 40 - 45cm by 2100. However, this may underestimate actual SLR for the estuary by 2100, since it takes no account of predicted climate-driven global SLR acceleration (IPCC 2007) up to 2100

    Studies in predictor display technique Final report

    Get PDF
    Predictor display technique for manual altitude control, and automatic pitch axis performanc

    REVIEW ARTICLE Mycobacterium bovis (bovine tuberculosis) infection in North American wildlife: current status and opportunities for mitigation of risks of further infection in wildlife populations

    Get PDF
    Mycobacterium bovis (M. bovis), the causative agent of bovine tuberculosis, has been identified in nine geographically distinct wildlife populations in North America and Hawaii and is endemic in at least three populations, including members of the Bovidae, Cervidae, and Suidae families. The emergence of M. bovis in North American wildlife poses a serious and growing risk for livestock and human health and for the recreational hunting industry. Experience in many countries, including the USA and Canada, has shown that while M. bovis can be controlled when restricted to livestock species, it is almost impossible to eradicate once it has spread into ecosystems with free-ranging maintenance hosts. Therefore, preventing transmission of M. bovis to wildlife may be the most effective way to mitigate economic and health costs of this bacterial pathogen. Here we review the status of M. bovis infection in wildlife of North America and identify risks for its establishment in uninfected North American wildlife populations where eradication or control would be difficult and costly. We identified four common risk factors associated with establishment of M. bovis in uninfected wildlife populations in North America, (1) commingling of infected cattle with susceptible wildlife, (2) supplemental feeding of wildlife, (3) inadequate surveillance of at-risk wildlife, and (4) unrecognized emergence of alternate wildlife species as successful maintenance hosts. We then propose the use of integrated and adaptive disease management to mitigate these risk factors to prevent establishment of M. bovis in susceptible North American wildlife species

    Derivation of a dynamic model of the kinetics of nitrogen uptake throughout the growth of lettuce : calibration and validation

    Get PDF
    A kinetic model of nitrogen (N) uptake throughout growth was developed for lettuce cultivated in nutrient solution under varying natural light conditions. The model couples nitrogen uptake with dry matter accumulation using a two-compartment mechanistic approach, incorporating structural and non-structural pools. Maximum nitrogen uptake rates are assumed to decline with shoot dry weight, to allow for the effects of plant age. The model was parameterized using data from the literature, and calibrated for differences in light intensity using an optimization algorithm utilizing data from three experiments in different growing seasons. The calibrated model was validated against the data from two independent experiments conducted under different light conditions. Results showed that the model made good predictions of nitrogen uptake by plants from seedlings to maturity under fluctuating light levels in a glasshouse. Plants grown at a higher light intensity showed larger maximum nitrogen uptake rates, but the effect of light intensity declined towards plant maturity

    Phase Control and Eclipse Avoidance in Near Rectilinear Halo Orbits

    Get PDF
    The baseline trajectory proposed for the Gateway is a southern Earth-Moon L2 Near Rectilinear Halo Orbit (NRHO). Designed to avoid eclipses, the NRHO exhibits a resonance with the lunar synodic period. The current investigation details the eclipse behavior in the baseline NRHO. Then, phase control is added to the orbit maintenance algorithm to regulate perilune passage time and maintain the eclipse-free characteristics of the Gateway reference orbit. A targeting strategy is designed to periodically target back to the long-horizon virtual reference if the orbit diverges over time in the presence of additional perturbations
    corecore