478 research outputs found

    Ambipolar Nernst effect in NbSe2_2

    Full text link
    The first study of Nernst effect in NbSe2_2 reveals a large quasi-particle contribution with a magnitude comparable and a sign opposite to the vortex signal. Comparing the effect of the Charge Density Wave(CDW) transition on Hall and Nernst coefficients, we argue that this large Nernst signal originates from the thermally-induced counterflow of electrons and holes and indicates a drastic change in the electron scattering rate in the CDW state. The results provide new input for the debate on the origin of the anomalous Nernst signal in high-Tc_c cuprates.Comment: 5 pages including 4 figure

    Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation

    Full text link
    We give here the derivation of a Gross-Pitaevskii--type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91 (2003) 030401]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided.Comment: Phys. Rev. A (accepted

    The onset of the vortex-like Nernst signal above Tc in La_{2-x}Sr_xCuO_4 and Bi_2Sr_{2-y}La_yCuO_6

    Full text link
    The diffusion of vortices down a thermal gradient produces a Josephson signal which is detected as the vortex Nernst effect. In a recent report, Xu et al., Nature 406, 486 (2000), an enhanced Nernst signal identified with vortex-like excitations was observed in a series of La_{2-x}Sr_xCuO_4 (LSCO) crystals at temperatures 50-100 K above T_c. To pin down the onset temperature T_{\nu} of the vortex-like signal in the lightly doped regime (0.03 < x < 0.07), we have re-analyzed in detail the carrier contribution to the Nernst signal. By supplementing new Nernst measurements with thermopower and Hall-angle data, we isolate the off-diagonal Peltier conductivity \alpha_{xy} and show that its profile provides an objective determination of T_{\nu}. With the new results, we revise the phase diagram for the fluctuation regime in LSCO to accomodate the lightly doped regime. In the cuprate Bi_2Sr_{2-y}La_yCuO_6, we find that the carrier contribution is virtually negligible for y in the range 0.4-0.6. The evidence for an extended temperature interval with vortex-like excitations is even stronger in this system. Finally, we discuss how T_{\nu} relates to the pseudogap temperature T* and the implications of strong fluctuations between the pseudogap state and the d-wave superconducting state.Comment: 10 pages, 10 figure

    Heat kernel of integrable billiards in a magnetic field

    Full text link
    We present analytical methods to calculate the magnetic response of non-interacting electrons constrained to a domain with boundaries and submitted to a uniform magnetic field. Two different methods of calculation are considered - one involving the large energy asymptotic expansion of the resolvent (Stewartson-Waechter method) is applicable to the case of separable systems, and another based on the small time asymptotic behaviour of the heat kernel (Balian-Bloch method). Both methods are in agreement with each other but differ from the result obtained previously by Robnik. Finally, the Balian-Bloch multiple scattering expansion is studied and the extension of our results to other geometries is discussed.Comment: 13 pages, Revte

    A Variational Procedure for Time-Dependent Processes

    Full text link
    A simple variational Lagrangian is proposed for the time development of an arbitrary density matrix, employing the "factorization" of the density. Only the "kinetic energy" appears in the Lagrangian. The formalism applies to pure and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport theory, etc. It recaptures the Least Dissipation Function condition of Rayleigh-Onsager {\bf and in practical applications is flexible}. The variational proposal is tested on a two level system interacting that is subject, in one instance, to an interaction with a single oscillator and, in another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure

    Prediction of Anisotropic Single-Dirac-Cones in Bi1x{}_{1-x}Sbx{}_{x} Thin Films

    Full text link
    The electronic band structures of Bi1x{}_{1-x}Sbx{}_{x} thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi1x{}_{1-x}Sbx{}_{x} thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band-gap, which can be used in a general two-dimensional system that has a non-parabolic dispersion relation as in a Bi1x{}_{1-x}Sbx{}_{x} thin film system

    Quantum transport through mesoscopic disordered interfaces, junctions, and multilayers

    Full text link
    The study explores perpendicular transport through macroscopically inhomogeneous three-dimensional disordered conductors using mesoscopic methods (real-space Green function technique in a two-probe measuring geometry). The nanoscale samples (containing 1000\sim1000 atoms) are modeled by a tight-binding Hamiltonian on a simple cubic lattice where disorder is introduced in the on-site potential energy. I compute the transport properties of: disordered metallic junctions formed by concatenating two homogenous samples with different kinds of microscopic disorder, a single strongly disordered interface, and multilayers composed of such interfaces and homogeneous layers characterized by different strength of the same type of microscopic disorder. This allows us to: contrast resistor model (semiclassical) approach with fully quantum description of dirty mesoscopic multilayers; study the transmission properties of dirty interfaces (where Schep-Bauer distribution of transmission eigenvalues is confirmed for single interface, as well as for the stack of such interfaces that is thinner than the localization length); and elucidate the effect of coupling to ideal leads (``measuring apparatus'') on the conductance of both bulk conductors and dirty interfaces When multilayer contains a ballistic layer in between two interfaces, its disorder-averaged conductance oscillates as a function of Fermi energy. I also address some fundamental issues in quantum transport theory--the relationship between Kubo formula in exact state representation and ``mesoscopic Kubo formula'' (which gives the zero-temperature conductance of a finite-size sample attached to two semi-infinite ideal leads) is thoroughly reexamined by comparing their answers for both the junctions and homogeneous samples.Comment: 18 pages, 17 embedded EPS figure

    Simulation of dimensionality effects in thermal transport

    Full text link
    The discovery of nanostructures and the development of growth and fabrication techniques of one- and two-dimensional materials provide the possibility to probe experimentally heat transport in low-dimensional systems. Nevertheless measuring the thermal conductivity of these systems is extremely challenging and subject to large uncertainties, thus hindering the chance for a direct comparison between experiments and statistical physics models. Atomistic simulations of realistic nanostructures provide the ideal bridge between abstract models and experiments. After briefly introducing the state of the art of heat transport measurement in nanostructures, and numerical techniques to simulate realistic systems at atomistic level, we review the contribution of lattice dynamics and molecular dynamics simulation to understanding nanoscale thermal transport in systems with reduced dimensionality. We focus on the effect of dimensionality in determining the phononic properties of carbon and semiconducting nanostructures, specifically considering the cases of carbon nanotubes, graphene and of silicon nanowires and ultra-thin membranes, underlying analogies and differences with abstract lattice models.Comment: 30 pages, 21 figures. Review paper, to appear in the Springer Lecture Notes in Physics volume "Thermal transport in low dimensions: from statistical physics to nanoscale heat transfer" (S. Lepri ed.

    Spin injection into a ballistic semiconductor microstructure

    Full text link
    A theory of spin injection across a ballistic ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann regime. Spin injection coefficient γ\gamma is suppressed by the Sharvin resistance of the semiconductor rN=(h/e2)(π2/SN)r_N^*=(h/e^2)(\pi^2/S_N), where SNS_N is the Fermi-surface cross-section. It competes with the diffusion resistances of the ferromagnets rFr_F, and γrF/rN1\gamma\sim r_F/r_N^*\ll 1 in the absence of contact barriers. Efficient spin injection can be ensured by contact barriers. Explicit formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results of the ballistic and diffusive theories of spin injection is added. To this end, some notations are changed. Three references added, typos correcte
    corecore