900 research outputs found

    Report on Tests and Measurements of Hadronic Interaction Properties with Air Showers

    Full text link
    We present a summary of recent tests and measurements of hadronic interaction properties with air showers. This report has a special focus on muon density measurements. Several experiments reported deviations between simulated and recorded muon densities in extensive air showers, while others reported no discrepancies. We combine data from eight leading air shower experiments to cover shower energies from PeV to tens of EeV. Data are combined using the z-scale, a unified reference scale based on simulated air showers. Energy-scales of experiments are cross-calibrated. Above 10 PeV, we find a muon deficit in simulated air showers for each of the six considered hadronic interaction models. The deficit is increasing with shower energy. For the models EPOS-LHC and QGSJet-II.04, the slope is found significant at 8 sigma.Comment: Submitted to the Proceedings of UHECR201

    Diurnal variation of steroid hormones and their reference intervals using mass spectrometric analysis

    Get PDF
    Objective: Accurate measurement of steroid hormones remains challenging. Mass spectrometry affords a reliable means for quantitating steroid profiles accurately. Our objective was to establish and define (1) the extent of diurnal fluctuations in steroid concentrations that potentially necessitate strict adherence to time of sample acquisition and (2) time-dependent steroid reference intervals. Design: Nine steroid markers were examined in couplets in males and females. Methods: Using isotope dilution high-performance liquid chromatography–tandem mass spectrometric (LC–MS/MS) analysis, we developed a multi-steroid profile requiring only a minimal volume of serum (0.1 mL). Couplet (AM and PM) measurements of steroid hormones for 120 healthy females (F) and 62 healthy males (M) were obtained. Patients were recruited from several participating centers. Results: The following diurnal values were noted to be significantly different in both females and males: cortisone, cortisol, corticosterone, 11 deoxycortisol (11 DOC), androstenedione, 17a-hydroxyprogesterone (17 OHP) and dehydroepiandrosterone (DHEA). Testosterone was only found to have significant diurnal variance in males. Progesterone showed no significant difference in AM and PM values for either groups and thus may provide an internal control. Conclusions: When diagnosing endocrine disorders, it is imperative to acknowledge the 24-h diurnal variation of the biochemical steroid markers. We highlight the importance of standardization of collection times and appropriate implementation of reference intervals. Precis: We identify diurnal fluctuations in steroid concentrations with time of day and emphasize the importance of adhering to firm time of sample acquisition

    Lateral Distribution of Muons in IceCube Cosmic Ray Events

    Get PDF
    In cosmic ray air showers, the muon lateral separation from the center of the shower is a measure of the transverse momentum that the muon parent acquired in the cosmic ray interaction. IceCube has observed cosmic ray interactions that produce muons laterally separated by up to 400 m from the shower core, a factor of 6 larger distance than previous measurements. These muons originate in high pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy secondary interactions. The separation distribution shows a transition to a power law at large values, indicating the presence of a hard pT component that can be described by perturbative quantum chromodynamics. However, the rates and the zenith angle distributions of these events are not well reproduced with the cosmic ray models tested here, even those that include charm interactions. This discrepancy may be explained by a larger fraction of kaons and charmed particles than is currently incorporated in the simulations

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Search for Relativistic Magnetic Monopoles with IceCube

    Get PDF
    We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km3^{3}. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km3^{3} of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of \Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits for β0.8\beta\geq0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost γ\gamma below 10710^{7}. This result is then interpreted for a wide range of mass and kinetic energy values.Comment: 11 pages, 11 figures. v2 is minor text edits, no changes to resul
    corecore