242 research outputs found

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    Performance of mitochondrial DNA mutations detecting early stage cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with cancer and many other disorders. These mutations can be point mutations or deletions, or admixtures (heteroplasmy). The detection of mtDNA mutations in body fluids using resequencing microarrays, which are more sensitive than other sequencing methods, could provide a strategy to measure mutation loads in remote anatomical sites.</p> <p>Methods</p> <p>We determined the mtDNA mutation load in the entire mitochondrial genome of 26 individuals with different early stage cancers (lung, bladder, kidney) and 12 heavy smokers without cancer. MtDNA was sequenced from three matched specimens (blood, tumor and body fluid) from each cancer patient and two matched specimens (blood and sputum) from smokers without cancer. The inherited wildtype sequence in the blood was compared to the sequences present in the tumor and body fluid, detected using the Affymetrix Genechip<sup>® </sup>Human Mitochondrial Resequencing Array 1.0 and supplemented by capillary sequencing for noncoding region.</p> <p>Results</p> <p>Using this high-throughput method, 75% of the tumors were found to contain mtDNA mutations, higher than in our previous studies, and 36% of the body fluids from these cancer patients contained mtDNA mutations. Most of the mutations detected were heteroplasmic. A statistically significantly higher heteroplasmy rate occurred in tumor specimens when compared to both body fluid of cancer patients and sputum of controls, and in patient blood compared to blood of controls. Only 2 of the 12 sputum specimens from heavy smokers without cancer (17%) contained mtDNA mutations. Although patient mutations were spread throughout the mtDNA genome in the lung, bladder and kidney series, a statistically significant elevation of tRNA and ND complex mutations was detected in tumors.</p> <p>Conclusion</p> <p>Our findings indicate comprehensive mtDNA resequencing can be a high-throughput tool for detecting mutations in clinical samples with potential applications for cancer detection, but it is unclear the biological relevance of these detected mitochondrial mutations. Whether the detection of tumor-specific mtDNA mutations in body fluidsy this method will be useful for diagnosis and monitoring applications requires further investigation.</p

    Lack of association between mutations of gene-encoding mitochondrial D310 (displacement loop) mononucleotide repeat and oxidative stress in chronic dialysis patients in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mitochondria (mt) are highly susceptible to reactive oxygen species (ROS). In this study, we investigated the association between a region within the displacement loop (D-loop) in mtDNA that is highly susceptible to ROS and oxidative stress markers in chronic dialysis patients. We enrolled 184 chronic dialysis patients and 213 age-matched healthy subjects for comparison. Blood levels of oxidative stress markers, such as thiobarbituric acid reactive substances (TBARS) and free thiol, and the mtDNA copy number were determined. A mononucleotide repeat sequence (CCCC...CCCTCCCCCC) between nucleotides 303 and 316-318 (D310) was identified in mtDNA.</p> <p>Results</p> <p>Depending on alterations in the D310 mononucleotide repeat, subjects were categorized into 4 subgroups: 7-C, 8-C, 9 or 10-C, and T-to-C transition. Oxidative stress was higher in chronic dialysis patients, evidenced by higher levels of TBARS and mtDNA copy number, and a lower level of free thiol. The distribution of 7-C, 8-C, and 9-10C in dialysis and control subjects was as follows: 7-C (38% <it>vs. </it>31.5%), 8-C (35.3% <it>vs. </it>43.2%), and 9-10C (24.5% <it>vs. </it>22.1%). Although there were significant differences in levels of TBARS, free thiol, and the mtDNA copy number in the D310 repeat subgroups (except T-to-C transition) between dialysis patients and control subjects, post hoc analyses within the same study cohort revealed no significant differences.</p> <p>Conclusion</p> <p>Although oxidative stress was elevated in chronic dialysis patients and resulted in a compensatory increase in the mtDNA copy number, homopolymeric C repeats in the mtDNA region (D310), susceptible to ROS, were not associated with oxidative stress markers in these patients.</p

    Polymorphisms in the Mn-SOD and EC-SOD Genes and Their Relationship to Diabetic Neuropathy in Type 1 Diabetes Mellitus

    Get PDF
    BACKGROUND: Oxidative stress, resulting in a marked increase in the level of oxygen free radicals (OFR), has been implicated in the etiology of diabetic neuropathy (DN). Antioxidant enzymes may protect against the rapid onset and progression of DN, by reducing the excess of OFR and peroxide. Mutations and polymorphisms in the genes encoding such enzymes may therefore result in predisposition to DN. We investigated the role of genes encoding two antioxidant enzymes, mitochondrial (Mn-SOD) and extracellular (EC-SOD) superoxide dismutase, in DN pathogenesis in a Russian population. We studied Ala(-9)Val and Ile58Thr polymorphisms of the Mn-SOD gene and Arg213Gly dimorphism of the EC-SOD gene in type 1 diabetic patients with (n = 82) and without DN (n = 84). RESULTS: We developed and used a new polymerase chain reaction (PCR) assays for rapid detection of polymorphisms. These assays involved the use of mismatch PCR primers to create restriction sites in the amplified product only in presence of the polymorphic base. The PCR product was than digested with BshTI, Eco32I or Eco52I to detect Ala(-9)Val, Ile58Thr or Arg213Gly polymorphic site respectively. The frequencies of the Ala allele (50.6% vs. 68.5%, p < 0.002) and the Ala/Ala genotype (17.1% vs. 39.3%, p < 0.005) of the Mn-SOD gene were significantly lower in DN patients than in diabetic subjects without DN. In contrast, the Val allele (49.4% vs. 31.5%, p < 0.002) and the Val/Val genotype (15.9% vs. 2.4%, p < 0.01) were significantly more frequent in the DN patients than in the control group. CONCLUSIONS: Ala(-9)Val substitution in the Mn-SOD gene was associated with DN in a Russian populatio

    Orally available Mn porphyrins with superoxide dismutase and catalase activities

    Get PDF
    Superoxide dismutase/catalase mimetics, such as salen Mn complexes and certain metalloporphyrins, catalytically neutralize reactive oxygen and nitrogen species, which have been implicated in the pathogenesis of many serious diseases. Both classes of mimetic are protective in animal models of oxidative stress. However, only AEOL11207 and EUK-418, two uncharged Mn porphyrins, have been shown to be orally bioavailable. In this study, EUK-418 and several new analogs (the EUK-400 series) were synthesized and shown to exhibit superoxide dismutase, catalase, and peroxidase activities in vitro. Some also protected PC12 cells against staurosporine-induced cell death. All EUK-400 compounds were stable in simulated gastric fluid, and most were substantially more lipophilic than the salen Mn complexes EUK-189 and EUK-207, which lack oral activity. Pharmacokinetics studies demonstrate the presence of all EUK-400 series compounds in the plasma of rats after oral administration. These EUK-400 series compounds are potential oral therapeutic agents for cellular damage caused by oxidative stress

    A Human Protein Interaction Network Shows Conservation of Aging Processes between Human and Invertebrate Species

    Get PDF
    We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins

    Association between Changes in Muscle Quality with Exercise Training and Changes in Cardiorespiratory Fitness Measures in Individuals with Type 2 Diabetes Mellitus: Results from the HART-D Study

    Get PDF
    Introduction: Type 2 diabetes mellitus (T2DM) is associated with a reduction in muscle quality. However, there is inadequate empirical evidence to determine whether changes in muscle quality following exercise are associated with improvement in cardiorespiratory fitness (CRF) in individuals with T2DM. The objective of this study was to investigate the association between change in muscle quality following a 9-month intervention of aerobic training (AT), resistance training (RT) or a combination of both (ATRT) and cardiorespiratory fitness (CRF) in individuals with T2DM. Material and Methods A total of 196 participants were randomly assigned to a control, AT, RT, or combined ATRT for a 9-months intervention. The exposure variable was change in muscle quality [(Post: leg muscle strength/leg muscle mass)-[(Pre: leg muscle strength/leg muscle mass)]. Dependent variables were change in CRF measures including absolute and relative VO2peak, and treadmill time to exhaustion (TTE) and estimated metabolic equivalent task (METs). Results Continuous change in muscle quality was independently associated with change in absolute (β = 0.015; p = 0.019) and relative (β = 0.200; p = 0.005) VO2peak, and TTE (β = 0.170; p = 0.043), but not with estimated METs (p > 0.05). A significant trend was observed across tertiles of change in muscle quality for changes in absolute (β = 0.050; p = 0.005) and relative (β = 0.624; p = 0.002) VO2peak following 9 months of exercise training. No such association was observed for change in TTE and estimated METs (p > 0.05). Discussion: The results from this ancillary study suggest that change in muscle quality following exercise training is associated with a greater improvement in CRF in individuals with T2DM. Given the effect RT has on increasing muscle quality, especially as part of a recommended training program (ATRT), individuals with T2DM should incorporate RT into their AT regimens to optimize CRF improvement

    Recording Lifetime Behavior and Movement in an Invertebrate Model

    Get PDF
    Characterization of lifetime behavioral changes is essential for understanding aging and aging-related diseases. However, such studies are scarce partly due to the lack of efficient tools. Here we describe and provide proof of concept for a stereo vision system that classifies and sequentially records at an extremely fine scale six different behaviors (resting, micro-movement, walking, flying, feeding and drinking) and the within-cage (3D) location of individual tephritid fruit flies by time-of-day throughout their lives. Using flies fed on two different diets, full sugar-yeast and sugar-only diets, we report for the first time their behavioral changes throughout their lives at a high resolution. We have found that the daily activity peaks at the age of 15–20 days and then gradually declines with age for flies on both diets. However, the overall daily activity is higher for flies on sugar-only diet than those on the full diet. Flies on sugar-only diet show a stronger diurnal localization pattern with higher preference to staying on the top of the cage during the period of light-off when compared to flies on the full diet. Clustering analyses of age-specific behavior patterns reveal three distinct young, middle-aged and old clusters for flies on each of the two diets. The middle-aged groups for flies on sugar-only diet consist of much younger age groups when compared to flies on full diet. This technology provides research opportunities for using a behavioral informatics approach for understanding different ways in which behavior, movement, and aging in model organisms are mutually affecting

    Different Oxidative Stress Response in Keratinocytes and Fibroblasts of Reconstructed Skin Exposed to Non Extreme Daily-Ultraviolet Radiation

    Get PDF
    Experiments characterizing the biological effects of sun exposure have usually involved solar simulators. However, they addressed the worst case scenario i.e. zenithal sun, rarely found in common outdoor activities. A non-extreme ultraviolet radiation (UV) spectrum referred as “daily UV radiation” (DUVR) with a higher UVA (320–400 nm) to UVB (280–320 nm) irradiance ratio has therefore been defined. In this study, the biological impact of an acute exposure to low physiological doses of DUVR (corresponding to 10 and 20% of the dose received per day in Paris mid-April) on a 3 dimensional reconstructed skin model, was analysed. In such conditions, epidermal and dermal morphological alterations could only be detected after the highest dose of DUVR. We then focused on oxidative stress response induced by DUVR, by analyzing the modulation of mRNA level of 24 markers in parallel in fibroblasts and keratinocytes. DUVR significantly modulated mRNA levels of these markers in both cell types. A cell type differential response was noticed: it was faster in fibroblasts, with a majority of inductions and high levels of modulation in contrast to keratinocyte response. Our results thus revealed a higher sensitivity in response to oxidative stress of dermal fibroblasts although located deeper in the skin, giving new insights into the skin biological events occurring in everyday UV exposure

    Unique Signatures of Natural Background Radiation on Human Y Chromosomes from Kerala, India

    Get PDF
    The most frequently observed major consequences of ionizing radiation are chromosomal lesions and cancers, although the entire genome may be affected. Owing to its haploid status and absence of recombination, the human Y chromosome is an ideal candidate to be assessed for possible genetic alterations induced by ionizing radiation. We studied the human Y chromosome in 390 males from the South Indian state of Kerala, where the level of natural background radiation (NBR) is ten-fold higher than the worldwide average, and that from 790 unexposed males as control.We observed random microdeletions in the Azoospermia factor (AZF) a, b and c regions in >90%, and tandem duplication and copy number polymorphism (CNP) of 11 different Y-linked genes in about 80% of males exposed to NBR. The autosomal homologues of Y-linked CDY genes largely remained unaffected. Multiple polymorphic copies of the Y-linked genes showing single Y-specific signals suggested their tandem duplication. Some exposed males showed unilocus duplication of DAZ genes resulting in six copies. Notably, in the AZFa region, approximately 25% of exposed males showed deletion of the DBY gene, whereas flanking genes USP9Y and UTY remained unaffected. All these alterations were detected in blood samples but not in the germline (sperm) samples.Exposure to high levels of NBR correlated with several interstitial polymorphisms of the human Y chromosome. CNPs and enhanced transcription of the SRY gene after duplication are envisaged to compensate for the loss of Y chromosome in some cells. The aforesaid changes, confined to peripheral blood lymphocytes, suggest a possible innate mechanism protecting the germline DNA from the NBR. Genome analysis of a larger population focusing on greater numbers of genes may provide new insights into the mechanisms and risks of the resultant genetic damages. The present work demonstrates unique signatures of NBR on human Y chromosomes from Kerala, India
    corecore