4,680 research outputs found

    Influence of interface potential on the effective mass in Ge nanostructures

    Full text link
    The role of the interface potential on the effective mass of charge carriers is elucidated in this work. We develop a new theoretical formalism using a spatially dependent effective mass that is related to the magnitude of the interface potential. Using this formalism we studied Ge quantum dots (QDs) formed by plasma enhanced chemical vapour deposition (PECVD) and co-sputtering (sputter). These samples allowed us to isolate important consequences arising from differences in the interface potential. We found that for a higher interface potential, as in the case of PECVD QDs, there is a larger reduction in the effective mass, which increases the confinement energy with respect to the sputter sample. We further understood the action of O interface states by comparing our results with Ge QDs grown by molecular beam epitaxy. It is found that the O states can suppress the influence of the interface potential. From our theoretical formalism we determine the length scale over which the interface potential influences the effective mass

    Computed tomography head and facial bones review of a 2,700 year old Egyptian mummy

    Get PDF
    Computed tomography (CT) scanning techniques used in head and facial bones examination in the clinical environment can also be transferable to the imaging of post-mortem cases as a novel non-destructive and non-invasive investigation in forensic cases. We describe a study of the head and facial bones of a 2,700 year old Egyptian mummy. Cross-sectional investigation can lead to discovering unknown information of skeletal and soft tissue structures and anatomy to contribute to the knowledge of preserved mummified remains and the practice of palaeoradiology

    Long-Term Rotational Evolution of the STIS CCD Flatfields

    Get PDF
    We confirm a long-term rotational drift of 0.0031 degrees/year of the STIS CCD based upon analysis of 50CCD flatfields spanning over 20 years of calibration data. Using the dust motes present in the flatfields, we extract the positions of the motes in each image, allowing us to develop a catalog of stable, high ‘signal-to-noise’ mote features and track their relative positions over time. We find that the motes appear to be moving at the aforementioned rate relative to an approximate center of rotation located at X=468.02, Y=411.18 in detector pixel coordinates. Given the relatively large errors in centroiding the unusually-shaped and often asymmetric motes, we perform an MCMC slope-fitting analysis to derive an uncertainty on the rotation of ±0.0001 degrees/year. Our derived rotation rate value is similar to two previous complementary CCD analyses: a measurement of spectral trace rotation in the grating L modes, and a time-dependent offset in detector true north position angle relative to the FITS header orientation keyword in science images. We therefore recommend that archival and future STIS CCD images should have their header information updated accordingly to account for this rotational drift. We also suggest similar corrections for rotational effects with respect to the reference files for spectral traces

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Anomalous optical phonons in FeTe pnictides: spin state, magnetic order, and lattice anharmonicity

    Full text link
    Polarized Raman-scattering spectra of non-superconducting, single-crystalline FeTe are investigated as function of temperature. We have found a relation between the magnitude of ordered magnetic moments and the linewidth of A1g phonons at low temperatures. This relation is attributed to the intermediate spin state (S=1) and the orbital degeneracy of the Fe ions. Spin-phonon coupling constants have been estimated based on microscopic modeling using density-functional theory and analysis of the local spin density. Our observations show the importance of orbital degrees of freedom for the Fe-based superconductors with large ordered magnetic moments, while small magnetic moment of Fe ions in some iron pnictides reflects the low spin state of Fe ions in those systems.Comment: 17 pages, 3 figure
    • 

    corecore