3,283 research outputs found

    Measurement of the lowest millimetre-wave transition frequency of the CH radical

    Full text link
    The CH radical offers a sensitive way to test the hypothesis that fundamental constants measured on earth may differ from those observed in other parts of the universe. The starting point for such a comparison is to have accurate laboratory frequencies. Here we measure the frequency of the lowest millimetre-wave transition of CH, near 535 GHz, with an accuracy of 0.6 kHz. This improves the uncertainty by roughly two orders of magnitude over previous determinations and opens the way for sensitive new tests of varying constants.Comment: 5 pages, 5 figure

    Atom detection and photon production in a scalable, open, optical microcavity

    Full text link
    A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps towards building an optical microcavity network on an atom chip for applications in quantum information processing.Comment: 4 pages, 4 figures. A typographical error in the published paper has been corrected (equation of the corrected normalized variance, page 3, 2nd paragraph

    Minimally-destructive detection of magnetically-trapped atoms using frequency-synthesised light

    Full text link
    We present a technique for atomic density measurements by the off-resonant phase-shift induced on a two-frequency, coherently-synthesised light beam. We have used this scheme to measure the column density of a magnetically trapped atom cloud and to monitor oscillations of the cloud in real time by making over a hundred non-destructive local density measurments. For measurements using pulses of 10,000-100,000 photons lasting ~10 microsecond, the precision is limited by statistics of the photons and the photodiode avalanche. We explore the relationship between measurement precision and the unwanted loss of atoms from the trap and introduce a figure of merit that characterises it. This method can be used to probe the density of a BEC with minimal disturbance of its phase.Comment: Submitted to New Journal of Physic

    Nonadiabatic transitions in a Stark decelerator

    Full text link
    In a Stark decelerator, polar molecules are slowed down and focussed by an inhomogeneous electric field which switches between two configurations. For the decelerator to work, it is essential that the molecules follow the changing electric field adiabatically. When the decelerator switches from one configuration to the other, the electric field changes in magnitude and direction, and this can cause molecules to change state. In places where the field is weak, the rotation of the electric field vector during the switch may be too rapid for the molecules to maintain their orientation relative to the field. Molecules that are at these places when the field switches may be lost from the decelerator as they are transferred into states that are not focussed. We calculate the probability of nonadiabatic transitions as a function of position in the periodic decelerator structure and find that for the decelerated group of molecules the loss is typically small, while for the un-decelerated group of molecules the loss can be very high. This loss can be eliminated using a bias field to ensure that the electric field magnitude is always large enough. We demonstrate our findings by comparing the results of experiments and simulations for the Stark deceleration of LiH and CaF molecules. We present a simple method for calculating the transition probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion

    A search for varying fundamental constants using Hz-level frequency measurements of cold CH molecules

    Get PDF
    Many modern theories predict that the fundamental constants depend on time, position, or the local density of matter. We develop a spectroscopic method for pulsed beams of cold molecules, and use it to measure the frequencies of microwave transitions in CH with accuracy down to 3 Hz. By comparing these frequencies with those measured from sources of CH in the Milky Way, we test the hypothesis that fundamental constants may differ between the high and low density environments of the Earth and the interstellar medium. For the fine structure constant we find \Delta\alpha/\alpha = (0.3 +/- 1.1)*10^{-7}, the strongest limit to date on such a variation of \alpha. For the electron-to-proton mass ratio we find \Delta\mu/\mu = (-0.7 +/- 2.2) * 10^{-7}. We suggest how dedicated astrophysical measurements can improve these constraints further and can also constrain temporal variation of the constants.Comment: 8 pages, 3 figure

    ICP polishing of silicon for high quality optical resonators on a chip

    Full text link
    Miniature concave hollows, made by wet etching silicon through a circular mask, can be used as mirror substrates for building optical micro-cavities on a chip. In this paper we investigate how ICP polishing improves both shape and roughness of the mirror substrates. We characterise the evolution of the surfaces during the ICP polishing using white-light optical profilometry and atomic force microscopy. A surface roughness of 1 nm is reached, which reduces to 0.5 nm after coating with a high reflectivity dielectric. With such smooth mirrors, the optical cavity finesse is now limited by the shape of the underlying mirror

    Bose-Einstein Condensation on a Permanent-Magnet Atom Chip

    Full text link
    We have produced a Bose-Einstein condensate on a permanent-magnet atom chip based on periodically magnetized videotape. We observe the expansion and dynamics of the condensate in one of the microscopic waveguides close to the surface. The lifetime for atoms to remain trapped near this dielectric material is significantly longer than above a metal surface of the same thickness. These results illustrate the suitability of microscopic permanent-magnet structures for quantum-coherent preparation and manipulation of cold atoms.Comment: 4 pages, 6 figures, Published in Phys. Rev. A, Rapid Com

    A high quality, efficiently coupled microwave cavity for trapping cold molecules

    Full text link
    We characterize a Fabry-Perot microwave cavity designed for trapping atoms and molecules at the antinode of a microwave field. The cavity is fed from a waveguide through a small coupling hole. Focussing on the compact resonant modes of the cavity, we measure how the electric field profile, the cavity quality factor, and the coupling efficiency, depend on the radius of the coupling hole. We measure how the quality factor depends on the temperature of the mirrors in the range from 77 to 293K. The presence of the coupling hole slightly changes the profile of the mode, leading to increased diffraction losses around the edges of the mirrors and a small reduction in quality factor. We find the hole size that maximizes the intra-cavity electric field. We develop an analytical theory of the aperture-coupled cavity that agrees well with our measurements, with small deviations due to enhanced diffraction losses. We find excellent agreement between our measurements and finite-difference time-domain simulations of the cavity.Comment: 16 pages, 8 figure
    • …
    corecore