9,762 research outputs found

    Quantum fluctuations of the electroweak sphaleron: Erratum and Addendum

    Full text link
    We correct an error in our treatment of the tadpole contribution to the fluctuation determinant of the sphaleron, and also a minor mistake in a previous estimate. Thereby the overall agreement between the two existing exact computations and their consistency with the estimate is improved considerably.Comment: 4 pages, Dortmund preprint DO-TH-93/19E

    The Rachel Carson Letters and the Making of Silent Spring

    Get PDF
    Environment, conservation, green, and kindred movements look back to Rachel Carson’s 1962 book Silent Spring as a milestone. The impact of the book, including on government, industry, and civil society, was immediate and substantial, and has been extensively described; however, the provenance of the book has been less thoroughly examined. Using Carson’s personal correspondence, this paper reveals that the primary source for Carson’s book was the extensive evidence and contacts compiled by two biodynamic farmers, Marjorie Spock and Mary T. Richards, of Long Island, New York. Their evidence was compiled for a suite of legal actions (1957-1960) against the U.S. Government and that contested the aerial spraying of dichlorodiphenyltrichloroethane (DDT). During Rudolf Steiner’s lifetime, Spock and Richards both studied at Steiner’s Goetheanum, the headquarters of Anthroposophy, located in Dornach, Switzerland. Spock and Richards were prominent U.S. anthroposophists, and established a biodynamic farm under the tutelage of the leading biodynamics exponent of the time, Dr. Ehrenfried Pfeiffer. When their property was under threat from a government program of DDT spraying, they brought their case, eventually lost it, in the process spent US$100,000, and compiled the evidence that they then shared with Carson, who used it, and their extensive contacts and the trial transcripts, as the primary input for Silent Spring. Carson attributed to Spock, Richards, and Pfeiffer, no credit whatsoever in her book. As a consequence, the organics movement has not received the recognition, that is its due, as the primary impulse for Silent Spring, and it is, itself, unaware of this provenance

    Long term frequency stability analysis of the GPS NAVSTAR 6 Cesium clock

    Get PDF
    Time domain measurements, taken between the NAVSTAR 6 Spacecraft Vehicle (SV) and the Vandenberg Global Positioning System (GPS) Monitor Site, by a pseudo random noise receiver, were collected over an extended period of time and analyzed to estimate the long term frequency stability of the NAVSTAR 6 onboard frequency standard, referenced to the Vandenberg MS frequency standard. The technique employed separates the clock offset from the composite signal by first applying corrections for equipment delays, ionospheric delay, tropospheric delay, Earth rotation and the relativistic effect. The data are edited and smoothed using the predicted SV ephemeris to calculate the geometric delay. Then all available passes from each of the four GPS monitor stations, are collected at 1-week intervals and used to calculate the NAVSTAR orbital elements. The procedure is then completed by subtracting the corrections and the geometric delay, using the final orbital elements, from the composite signal, thus leaving the clock offset and random error

    Booster propulsion/vehicle impact study, 2

    Get PDF
    This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel

    Energy laboratory data and model directory

    Get PDF
    Over the past several years M.I.T. faculty, staff, and students have produced a substantial body of research and analysis relating to the production, conversion, and use of energy in domestic and international markets. Much of this research takes the form of models and associated data bases that have enduring value in policy studies (models) and in supporting related research and modeling efforts (data). For such models and data it is important to ensure that the useful life cycle does not end with the conclusion of the research project.In an effort to develop a mechanism for supporting the maintenance and appropriate access to Energy Laboratory associated models and data, the Laboratory's Center for Energy Policy Research (CEPR) has sponsored a project to prepare this Energy Laboratory Data and Model Directory, edited by Dr. Supriya Lahiri and Ms. Jacqueline Carson. The Directory provides a survey of selected models and data bases and includes descriptive information, current status, mode of access, and contact persons. This directory represents the conclusion of this project

    Low Head Power Generation With Bulb Turbines

    Get PDF
    Because of uncertainties, delays, and high costs associated with alternative electric energy sources, many agencies responsible for generation of electrical power are investigating means of replacing or supplementing their existing hydroelectric facilities. In the head range between 10 and 60 feet, the bulb-type generating unit, in which the generator is enclosed in a metal capsule within the water passage, has many advantages, including higher efficiency and lower cost, over other types of turbines. Two of the municipalities in the United States which have recently conducted feasibility studies for installing bulb turbines in their systems are the City of Idaho Falls, Idaho, and the City of Vanceburg, Kentucky. For the City of Idaho Falls, International Engineering Company, Inc. prepared feasibility studies which demonstrated that for 7 MW units installed in existing plants, (I) bulb turbines are more economical than comparable conventional (vertical shaft Kaplan) units, (2) installation of new bulb turbine units is preferable to rehabilitating and/or relocating the existing generating units, and (3) the cost of energy generated by the proposed bulb turbine installations would be less than that from alternative sources of energy. At locations at existing dams on the Ohio River, the Vanceburg Electric Light, Heat and Power System studied installations comprised of 3 - 23 MW bulb turbines per plant and also found that the cost of energy from these facilities would be less than from other sources

    The South Australian Heat Flow Anomaly in east Antarctica: hot rocks in a cool place.

    Get PDF
    第3回極域科学シンポジウム/第32回極域地学シンポジウム 11月30日(金) 統計数理研究所 3階セミナー

    Communications-Inspired Projection Design with Application to Compressive Sensing

    Get PDF
    We consider the recovery of an underlying signal x \in C^m based on projection measurements of the form y=Mx+w, where y \in C^l and w is measurement noise; we are interested in the case l < m. It is assumed that the signal model p(x) is known, and w CN(w;0,S_w), for known S_W. The objective is to design a projection matrix M \in C^(l x m) to maximize key information-theoretic quantities with operational significance, including the mutual information between the signal and the projections I(x;y) or the Renyi entropy of the projections h_a(y) (Shannon entropy is a special case). By capitalizing on explicit characterizations of the gradients of the information measures with respect to the projections matrix, where we also partially extend the well-known results of Palomar and Verdu from the mutual information to the Renyi entropy domain, we unveil the key operations carried out by the optimal projections designs: mode exposure and mode alignment. Experiments are considered for the case of compressive sensing (CS) applied to imagery. In this context, we provide a demonstration of the performance improvement possible through the application of the novel projection designs in relation to conventional ones, as well as justification for a fast online projections design method with which state-of-the-art adaptive CS signal recovery is achieved.Comment: 25 pages, 7 figures, parts of material published in IEEE ICASSP 2012, submitted to SIIM
    corecore