12,429 research outputs found

    Entanglement distribution by an arbitrarily inept delivery service

    Get PDF
    We consider the scenario where a company C manufactures in bulk pure entangled pairs of particles, each pair intended for a distinct pair of distant customers. Unfortunately, its delivery service is inept - the probability that any given customer pair receives its intended particles is S, and the customers cannot detect whether an error has occurred. Remarkably, no matter how small S is, it is still possible for C to distribute entanglement by starting with non-maximally entangled pairs. We determine the maximum entanglement distributable for a given S, and also determine the ability of the parties to perform nonlocal tasks with the qubits they receive.Comment: 5 pages, 3 figures. v2 includes minor change

    Sub-Kolmogorov-Scale Fluctuations in Fluid Turbulence

    Full text link
    We relate the intermittent fluctuations of velocity gradients in turbulence to a whole range of local dissipation scales generalizing the picture of a single mean dissipation length. The statistical distribution of these local dissipation scales as a function of Reynolds number is determined in numerical simulations of forced homogeneous isotropic turbulence with a spectral resolution never applied before which exceeds the standard one by at least a factor of eight. The core of the scale distribution agrees well with a theoretical prediction. Increasing Reynolds number causes the generation of ever finer local dissipation scales. This is in line with a less steep decay of the large-wavenumber energy spectra in the dissipation range. The energy spectrum for the highest accessible Taylor microscale Reynolds number R_lambda=107 does not show a bottleneck.Comment: 8 pages, 5 figures (Figs. 1 and 3 in reduced quality

    Universal Model of Finite-Reynolds Number Turbulent Flow in Channels and Pipes

    Get PDF
    In this Letter we suggest a simple and physically transparent analytical model of the pressure driven turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model gives accurate qualitative description of the profiles of the mean-velocity and Reynolds-stresses (second order correlations of velocity fluctuations) throughout the entire channel or pipe in the wide range of Re, using only three Re-independent parameters. The model sheds light on the long-standing controversy between supporters of the century-old log-law theory of von-K\`arm\`an and Prandtl and proposers of a newer theory promoting power laws to describe the intermediate region of the mean velocity profile.Comment: 4 pages, 6 figs, re-submitted PRL according to referees comment

    Particle and particle pair dispersion in turbulence modeled with spatially and temporally correlated stochastic processes

    Full text link
    In this paper we present a new model for modeling the diffusion and relative dispersion of particles in homogeneous isotropic turbulence. We use an Heisenberg-like Hamiltonian to incorporate spatial correlations between fluid particles, which are modeled by stochastic processes correlated in time. We are able to reproduce the ballistic regime in the mean squared displacement of single particles and the transition to a normal diffusion regime for long times. For the dispersion of particle pairs we find a t2t^{2}-dependence of the mean squared separation at short times and a tt-dependence for long ones. For intermediate times indications for a Richardson t3t^{3} law are observed in certain situations. Finally the influence of inertia of real particles on the dispersion is investigated.Comment: 10 pages, 7 figures, 1 tabl

    Entanglement and Symmetry: A Case Study in Superselection Rules, Reference Frames, and Beyond

    Get PDF
    This paper concentrates on a particular example of a constraint imposed by superselection rules (SSRs): that which applies when the parties (Alice and Bob) cannot distinguish among certain quantum objects they have. This arises naturally in the context of ensemble quantum information processing such as in liquid NMR. We discuss how a SSR for the symmetric group can be applied, and show how the extractable entanglement can be calculated analytically in certain cases, with a maximum bipartite entanglement in an ensemble of N Bell-state pairs scaling as log(N) as N goes to infinity . We discuss the apparent disparity with the asymptotic (N >> 1) recovery of unconstrained entanglement for other sorts of superselection rules, and show that the disparity disappears when the correct notion of applying the symmetric group SSR to multiple copies is used. Next we discuss reference frames in the context of this SSR, showing the relation to the work of von Korff and Kempe [Phys. Rev. Lett. 93, 260502 (2004)]. The action of a reference frame can be regarded as the analog of activation in mixed-state entanglement. We also discuss the analog of distillation: there exist states such that one copy can act as an imperfect reference frame for another copy. Finally we present an example of a stronger operational constraint, that operations must be non-collective as well as symmetric. Even under this stronger constraint we nevertheless show that Bell-nonlocality (and hence entanglement) can be demonstrated for an ensemble of N Bell-state pairs no matter how large N is. This last work is a generalization of that of Mermin [Phys. Rev. D 22, 356 (1980)].Comment: 16 pages, 6 figures. v2 updated version published in Phys Rev

    The general form of supersymmetric solutions of N=(1,0) U(1) and SU(2) gauged supergravities in six dimensions

    Full text link
    We obtain necessary and sufficient conditions for a supersymmetric field configuration in the N=(1,0) U(1) or SU(2) gauged supergravities in six dimensions, and impose the field equations on this general ansatz. It is found that any supersymmetric solution is associated to an SU(2)⋉R4SU(2)\ltimes \mathbb{R}^4 structure. The structure is characterized by a null Killing vector which induces a natural 2+4 split of the six dimensional spacetime. A suitable combination of the field equations implies that the scalar curvature of the four dimensional Riemannian part, referred to as the base, obeys a second order differential equation. Bosonic fluxes introduce torsion terms that deform the SU(2)⋉R4SU(2)\ltimes\mathbb{R}^4 structure away from a covariantly constant one. The most general structure can be classified in terms of its intrinsic torsion. For a large class of solutions the gauge field strengths admit a simple geometrical interpretation: in the U(1) theory the base is K\"{a}hler, and the gauge field strength is the Ricci form; in the SU(2) theory, the gauge field strengths are identified with the curvatures of the left hand spin bundle of the base. We employ our general ansatz to construct new supersymmetric solutions; we show that the U(1) theory admits a symmetric Cahen-Wallach4×S2_4\times S^2 solution together with a compactifying pp-wave. The SU(2) theory admits a black string, whose near horizon limit is AdS3×S3AdS_3\times S_3. We also obtain the Yang-Mills analogue of the Salam-Sezgin solution of the U(1) theory, namely R1,2×S3R^{1,2}\times S^3, where the S3S^3 is supported by a sphaleron. Finally we obtain the additional constraints implied by enhanced supersymmetry, and discuss Penrose limits in the theories.Comment: 1+29 pages, late

    Drag Reduction by Polymers in Wall Bounded Turbulence

    Full text link
    We address the mechanism of drag reduction by polymers in turbulent wall bounded flows. On the basis of the equations of fluid mechanics we present a quantitative derivation of the "maximum drag reduction (MDR) asymptote" which is the maximum drag reduction attained by polymers. Based on Newtonian information only we prove the existence of drag reduction, and with one experimental parameter we reach a quantitative agreement with the experimental measurements.Comment: 4 pages, 1 fig., included, PRL, submitte

    Dust attenuation in 2<z<3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field

    Get PDF
    17 pages, 7 figures, accepted version to be published in MNRASWe present the results of a new study of the relationship between infrared excess (IRX ≡ L IR/L UV), ultraviolet (UV) spectral slope (β) and stellar mass at redshifts 2 < z < 3, based on a deep Atacama Large Millimeter Array (ALMA) 1.3-mm continuum mosaic of the Hubble Ultra Deep Field. Excluding the most heavily obscured sources, we use a stacking analysis to show that z ≃ 2.5 star-forming galaxies in the mass range 9.25 ≤ log(M*/M ⊙) ≤ 10.75 are fully consistent with the IRX-β relation expected for a relatively grey attenuation curve, similar to the commonly adopted Calzetti law. Based on a large, mass-complete sample of 2 ≤ z ≤ 3 star-forming galaxies drawn frommultiple surveys, we proceed to derive a new empirical relationship between β and stellar mass, making it possible to predict UV attenuation (A1600) and IRX as a function of stellar mass, for any assumed attenuation law. Once again, we find that z ≃ 2.5 star-forming galaxies follow A1600-M* and IRX-M* relations consistent with a relatively grey attenuation law, and find no compelling evidence that star-forming galaxies at this epoch follow a reddening law as steep as the Small Magellanic Cloud (SMC) extinction curve. In fact, we use a simple simulation to demonstrate that previous determinations of the IRX-β relation may have been biased towards low values of IRX at red values of β, mimicking the signature expected for an SMC-like dust law. We show that this provides a plausible mechanism for reconciling apparently contradictory results in the literature and that, based on typical measurement uncertainties, stellar mass provides a cleaner prediction of UV attenuation than β. Although the situation at lower stellar masses remains uncertain, we conclude that for 2 < z < 3 star-forming galaxies with log(M*/M ⊙) ≥ 9.75, both the IRX-β and IRX-M* relations are well described by a Calzetti-like attenuation law.Peer reviewe

    Semi-classical stability of AdS NUT instantons

    Get PDF
    The semi-classical stability of several AdS NUT instantons is studied. Throughout, the notion of stability is that of stability at the one-loop level of Euclidean Quantum Gravity. Instabilities manifest themselves as negative eigenmodes of a modified Lichnerowicz Laplacian acting on the transverse traceless perturbations. An instability is found for one branch of the AdS-Taub-Bolt family of metrics and it is argued that the other branch is stable. It is also argued that the AdS-Taub-NUT family of metrics are stable. A component of the continuous spectrum of the modified Lichnerowicz operator on all three families of metrics is found.Comment: 18 pages, 3 figures; references adde
    • …
    corecore