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Universal Model of Finite Reynolds Number Turbulent Flow in Channels and Pipes
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Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

(Received 30 May 2007; published 8 February 2008)

In this Letter, we suggest a simple and physically transparent analytical model of pressure driven
turbulent wall-bounded flows at high but finite Reynolds numbers Re. The model provides an accurate
quantitative description of the profiles of the mean-velocity and Reynolds stresses (second order
correlations of velocity fluctuations) throughout the entire channel or pipe, for a wide range of Re, using
only three Re-independent parameters. The model sheds light on the long-standing controversy between
supporters of the century-old log-law theory of von Kàrmàn and Prandtl and proposers of a newer theory
promoting power laws to describe the intermediate region of the mean velocity profile.

DOI: 10.1103/PhysRevLett.100.054504 PACS numbers: 47.27.�i, 47.27.N�, 47.27.E�

An important challenge in wall-bounded Newtonian
turbulence is the description of the profiles of the mean
velocity and second order correlation functions of
turbulent-velocity fluctuations throughout the entire chan-
nel or pipe at relatively high but finite Reynolds numbers.
To understand the issue, focus on a channel of width 2L
between its parallel walls, where the incompressible fluid
velocity U�r; t� is decomposed into its average (over time)
and a fluctuating part

 U �r; t� � V�r� � u�r; t�; V�r� � hU�r; t�i:

In a stationary plane channel flow with a constant pressure
gradient p0 � �@p=@x, the only component of the mean
velocity V is the streamwise component Vx � V that de-
pends on wall normal direction z only. Near the wall, the
mean velocity profiles for different Reynolds numbers
exhibit data collapse once presented in wall units, where
the Reynolds number Re�, the normalized distance from
the wall z�, and the normalized mean velocity V��z�� are
defined (for channels) by

 Re � � L
��������
p0L

q
=�; z� � zRe�=L; V� � V=

��������
p0L

q
:

The classical theory of Prandtl and von Kàrmàn for infi-
nitely large Re� is based on the assumption that the single
characteristic scale in the problem is proportional to the
distance from the (nearest) wall. It leads to the celebrated
von Kàrmàn log-law [1]

 V��z�� � ��1 ln�z�� � B; (1)

which serves as a basis for the parametrization of turbulent
flows near a wall in many engineering applications. On the
face of it, this law agrees with the data (see, e.g., Fig. 1) for
relatively large z�, say for z� > 100, giving �� 0:4 and
B� 5. The range of validly of the log-law is definitely
restricted by the requirement � � 1, where � � z=L
(channel) ore � � r=R (pipe of radius R). For � � 1, the
global geometry becomes important leading to unavoid-
able deviations of V���� from the log-law (1), known as
the wake.

The problem is that for finite Re�, the corrections to the
log-law (1) are in powers of " � 1= lnRe� [2] and defi-
nitely cannot be neglected for the currently largest avail-
able direct numerical simulation (DNS) of channel flows
(Re� � 2003 [3], giving " 	 0:13). Even for Re� ap-
proaching 500 000 as in the Princeton Superpipe experi-
ment [4], " 	 0:08. This opens a Pandora’s box with
various possibilities to revise the log-law (1) and to replace
it, as was suggested in [2], by a power law

 V��z�� � C�Re���z
����Re��: (2)

Here, both C�Re�� and ��Re�� were represented as asymp-
totic series expansions in ". The relative complexity of this
proposition compared to the simplicity of Eq. (1) resulted
in a less than enthusiastic response in the fluid mechanics
community [5], leading to a rather fierce controversy be-
tween the log-law camp and the power-law camp. Various
attempts [2,4–8] to validate the log-law (1) or the alter-
native power law (2) were based on extensive analysis of
experimental data used to fit the velocity profiles as a
formal expansion in inverse powers of " or as composite
expansions in both z� and � . Note however that in the
excellent fits presented, say in [8], one uses four adjustable
parameters for each function.

In this Letter, we propose a complementary approach
to this issue which will finally use only three
Re�-independent universal parameters which are the
same for all the functions discussed. First, we ask what
could be missed in the textbook derivations of the classical
log-law (1) which may lead to different velocity profile
[including possibly the power law (2)]? Our answer is: the
mean turbulent velocity profile in the entire channel or pipe
can be described within the traditional approach if one
realizes how the characteristic length scale, which has
physical meaning of the size of energy containing eddies
‘, depends on the position in the flow. Simple scaling near
the wall, ‘� � �z�, leads to the log-law (1). The alter-
native suggestion of [2], ‘� / �z����Re��, leads to alterna-
tive power law (2). We see no physical reason why ‘ should
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behave in either manner. Instead, we propose that the eddy
size ‘ should be about z for z� L, and saturate at some
level ‘s & L approaching the center line, where the ef-
fect of the opposite wall is felt. Our analysis of DNS
data provides a strong support to this idea, allowing us to
get, within the traditional (second-order) closure proce-
dure, a quantitative description of the mean shear, S�z� �
dV�z�=dz, the kinetic energy density (per unit mass),
K�z� � hjuj2i=2, and the tangential Reynolds stress,
W�z� � �huxuzi, in the entire flow and in a wide region
of Re�, using only three Re�-independent parameters, �, B,
and ‘s (‘s 	 0:311L for the channel and ‘s 	 0:275L for
the pipe).

The closure model.—should relate three objects: S�,
K�, and W�. The first (exact) relation between these
objects follows from the Navier–Stokes equation for the
mean velocity, being the mechanical balance between the
momentum generated at distance z from the wall, i.e.,
p0�L� z�, and the momentum transferred to the wall by
kinematic viscosity and turbulent transport. In physical and
wall units it has the form

 �S�W � p0�L� z� ) S� �W� � 1� �; �=L: (3)

Already in 1877, Boussinesq attempted to close this equa-
tion by introducing the notion of turbulent viscosity �T ,
writing W � �TS [9]. Estimating �T as �W‘W

����
K
p

, one
finishes with the closure W� � �W‘

�
W

�������
K�
p

S�. Here, ‘W
is a �-dependent characteristic scale of energy containing
eddies, determining the nonlinear dissipation ofW, and �W
is a constant introduced here for convenience. A more
careful analysis of the balance equation for W (see
Ref. [10] and Appendix) that includes the viscous dis-
sipation of W, leads to a somewhat more involved closure
for W in a form involving an additional universal,
Re�-independent dimensionless function of z�:

 rWW
�	�W‘

�
W

�������
K�
p

S�; rW�z
���

�
1�

‘�6
buf

z�6

�
1=6
: (4)

Here, ‘�buf 	 49 is a Re�-independent length that plays a
role of the crossover scale (in wall units) between the
buffer and log-law region. In this form, ‘W��� / z near
the wall, and the choice �W 	 0:20 ensures that
lim�!0‘W��� � � .

A third relation to supplement Eqs. (3) and (4) is ob-
tained by balancing the turbulent energy generated by the
mean flow at a rate SW and the dissipation at a rate "K �
�hjruj2i:

 S�W� 	 "�K ; "�K � K�3=2=
�K‘�K �: (5)

Here, the dissipation is estimated via the energy cascade
over scales involving a characteristic scale of energy con-
taining eddies, ‘K�z� determining the energy transfer rate.
The constant �K 	 3:7 will be used to ensure that the slope
of this function at z� � 0 is unity.

Note that in (4) and (5), we used a local-balance ap-
proximation, neglecting the spatial energy flux. This ap-
proximation is very good in the log-law region, but it
deteriorates near the wall and near the center line.
Nevertheless, for our purposes, this has no consequences.
Near the wall, W� � S� and the local-balance approxi-
mation play no role in the exact mechanical balance (3)
that determines S. For the same reason, we also do not need
to introduce a correction rK�z

�� in (5) due to the direct
viscous dissipation [similar to rW�z�� in Eq. (4)] since the
length scale replacing ‘�buf here will be the dissipative scale
‘diss 	 5 which is entirely buried in the region where W
and K are small. Near the center line, S� tends to zero, and
Eq. (3) determines W� 	 1� � , which allows an accurate
determination of S�, because we know that ‘W and ‘K
must saturate.

FIG. 1 (color online). Left and Middle panels: comparison of the theoretical mean velocity profiles (solid lines) at different values of
Re� with the DNS data for the channel flow [3,14] (Left panel, gray squares; model with ‘buf � 49, � � 0:415, ‘s � 0:311) and with
the experimental Super-Pipe data [4] (Middle panel, gray circles; model with ‘buf � 46, � � 0:405, ‘s � 0:275). In dashed line, we
plot the viscous solution V� � z�. In dashed-dotted line, we present the von Kàrmàn log-law. Note that the theoretical predictions
with three Re�-independent parameters fits the data throughout the channel and pipe, from the viscous scale, through the buffer layer,
the log-layer, and the wake. For clarity, the plots are shifted vertically by five units. Right panel: The Reynolds-stress profiles (solid
lines) at Re� from 394 to 2003 (in channel) and from 5050 to 165 000 (in pipe) in comparison with available DNS data (dots) for the
channel.
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Profiles of the characteristic length scales ‘K, ‘W —
Now, we show that the source of confusion is the assump-
tion that the relevant length scales can be determined
a priori as ‘�K;W / �z

��� with � � 1 or � � 1. The actual
dependence ‘W and ‘K on z and L can be found from the
data provided by the numerical simulations. Consider first
‘W , defined by Eq. (4). We expect that plotting the scaling
function ‘�W=Re� computed for different values of Re�
should collapse the date onto one scaling function. The
quality of the data collapse for this scaling function is
presented in Fig. 2, demonstrating the expected saturation
at the center line.

The second length scale, ‘�K , is determined by the sec-
ond of Eq. (5). We again expect that ‘�K=Re� should
collapse the data obtained from different value of Re�
onto one scaling function. In Fig. 2, we demonstrate that
this scaling function leads to acceptable data collapse
throughout the channel and for all the four values of Re�
for which the simulation data are available.

Solution, velocity profiles and final scaling function.—
Solving Eqs. (3) together with S�W� � K�3=2=��K‘

�
K �

that follows from Eq. (5), we find

 W� � ��S�‘��2r�3=2
W ; (6)

where we have defined the von Kàrmàn constant � �
��3

W�K�
1=4 	 0:415 and the crucial scaling function

‘���� as follows:

 ‘� � 
‘�3
W ���‘

�
K ����

1=4 �
��������������������������������
W�3r3

W=S
�3"�K

4
q

: (7)

Note that if one replaces the energy dissipation rate "�K by
the rate of energy production W�S� and takes rW as unity,
this scaling function becomes the Prandtl mixing length
[1]. However, the latter suffers from a nonphysical diver-
gence at the center line whereas our length saturates to a
constant there as it should.

The convincing data collapse for the resulting function
‘����=Re� is shown in Fig. 2, rightmost panel. Substituting
Eqs. (5) and (6) in Eq. (3), we find a quadratic equation for

S with a solution

 S� �

����������������������������������������������������������������������
1� �1� ��
2�‘�����2=rW�z��3=2

q
� 1

2
�‘�����2=rW�z��3=2
: (8)

To integrate this equation and find the mean velocity profile
for any value of Re�, we need to determine the scaling
function ‘���� from the data. A careful analysis of the
DNS data allows us to find a good one-parameter fit for
‘����

 

‘����
Re�

� ‘s

�
1� exp

�
�

~�
‘s

�
1�

~�
2‘s

���
(9)

where ~� � ��1� �=2� and ‘s 	 0:311. The quality of the
fit is obvious from the continuous line in the rightmost
panel of Fig. 2. Note that the fit function is exactly constant
at mid channel, with zero slope. This is required by sym-
metry, and will be the reason for our good fit of data in the
wake region.

Finally, the theory for the mean velocity contains three
parameters, namely ‘s together with ‘�buff [which deter-
mines B in Eq. (1)] and �. We demonstrate now that with
these three parameters, we can determine the mean veloc-
ity profile for any value Re�, throughout the channel,
including the viscous layer, the buffer sublayer, the log-
law region, and the wake. Examples of the integration of
Eq. (8) are shown in Fig. 1. It is worthwhile to reiterate that
the good fits in the viscous and the wake regions (superior
to the fits presented in [10,11]), which are usually most
difficult to achieve, are obtained here due to the correct
asymptotics of ‘���� at � ! 0 and � ! 1. In addition, our
theory results also in the kinetic energy and Reynolds
stress profiles which are in agreement with the DNS data;
for W profiles, see Fig. 1.

Conclusions and application to experiments.—We dis-
cussed turbulent channel flow, demonstrating the existence
and usefulness of a scaling function ‘���� which allows us
to get the profiles of the mean velocities for all values of
Re� and throughout the channel, in a good agreement with

w K

FIG. 2 (color online). The scaling function ‘�W���=Re� (Left panel), ‘�K ���=Re� (Middle panel), and the final scaling function ‘����
(Right panel), as a function of � � z=L, for four different values of Re�, computed from the DNS data [3,14]. Note the data collapse
everywhere except at � ! 1 where W� � S� � 1 and accuracy is lost. The dashed line represents ~� � ��1� �=2� with a saturation
level 0.5; in solid line, we show the fitted function Eq. (9) with ‘sat � 0:311.
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DNS. We argued that the controversy between power laws
and log-laws is moot, stemming from a rough estimate of
the scaling function ‘����. While this function begins near
the wall as z�, it saturates later, and its full functional
dependence on � is crucial for finding the correct mean
velocity profiles. The approach also allows us to delineate
the accuracy of the log-law presentation, which depends on
z� and the value of Re�. For asymptotically large Re�, the
region of the log-law can be very large, but nevertheless it
breaks down near the mid channel and near the buffer layer.

To show that the present approach is quite general, we
apply it now to the experimental data that were at the cen-
ter of the controversy [2], i.e., the Princeton University
Superpipe data [4]. In Fig. 1 right panel, we show the mean
velocity profiles as measured in the Superpipe compared
with our prediction using the same scaling function ‘����.
Note that the data spans values of Re� from 5050 to
165 000, and the fits with only three Re�-independent
constants are very satisfactory. Note the 2% difference in
the value of � between the DNS and the experimental data;
we do not know at this point whether this stems from
inaccuracies in the DNS or the experimental data, or
whether turbulent flows in different geometries have differ-
ent values of �. While the latter is theoretically question-
able, we cannot exclude this possibility until a better
understanding of how to compute � from first principles
is achieved.

We thank L. Smits for providing the data of the
Princeton Superpipe and P. Monkewitz and H. Nagib for
useful discussion and access to their paper prior to pub-
lication. This work is supported in part by the US-Israel
Binational Science Foundation.

Appendix.—The exact balance equation for the
Reynolds shear stress can be found in [1]: P�W �R�

W �
"�W � T

�
W . Here, P�W � ��

�
yyS
� is the production of W�,

R�W is the redistribution of W� between other Reynolds
stress components, "�W is the viscous dissipation of W�,
and T�W is the turbulent transport of W�. Explicit expres-
sions for these terms are in [1]. Since �yy is O�K�, we
approximate P�W / �K

�S�. R�
W � RRI�

W � RIP�
W [1,10].

The first term describes the return to isotropy, while the
second one is responsible for the isotropization of produc-
tion. A slightly modified Rotta’s model [10,12] proposes
that RRI

W /
����
K
p

W=‘W . RIP is modeled according to [1,13],
such that RIP

W / K
�S�.

The viscous dissipation "W � �h@kux@kuzi is
O���Wz�2�. As explained in the text, we can neglect
the nonlocal term TW in the balance for the Reynolds stress
with impunity. To compensate for its loss in the viscous
range, we increase the estimate (��Wz�2) by a factor������������
K=K�

p
, where K� is a dimensional constant [10]

Eventually, "�W / �W
�

�������
K�
p

=z�2. Hence, the approxi-

mate algebraic balance equation for the Reynolds shear
stress reads

 � aK�S� � b
W�

�������
K�
p

‘�W
� cK�S� 	 �d

W�
�������
K�
p

z�2 ;

(10)

where a, b, c, d—are positive constants of O�1�. The last
equation may be rearranged to the form of the fist of Eq. (4)
but with rW � 1� ‘�buf‘

�
W=z

�2, ‘�buf � d=b. Since the sec-
ond term is dominant only near the wall where ‘�W � z�,
then rW ! 1� ‘�buf=z

�. In [11], it was realized that this
from, which is an interpolation between the near wall and
the bulk physics, can be modeled in a way that reflects
better the actual width of the buffer layer, using another
interpolation formula that reads

 rW �
�

1�
�
‘�buf

z�

�
n
�

1=n
(A1)

with n � 2. Best fit to simulational data which is currently
available is obtained with 5< n< 7. In this Letter, we
chose n � 6 leading to the second of Eqs. (4). This choice
simplifies the appearance of the Eqs. (6)–(8).
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