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We consider the scenario where a company C manufactures in bulk pure entangled pairs of
particles, each pair intended for a distinct pair of distant customers. Unfortunately, its delivery
service is inept – the probability that any given customer pair receives its intended particles is
S ∈ (0, 1), and the customers cannot detect whether an error has occurred. Remarkably, no matter
how small S is, it is still possible for C to distribute entanglement by starting with non-maximally

entangled pairs. We determine the maximum entanglement distributable for a given S, and also
determine the ability of the parties to perform nonlocal tasks with the qubits they receive.
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I. INTRODUCTION

Entanglement is an important resource in developing
new quantum technologies. It is essential for many quan-
tum information processing (QIP) tasks such as quantum
computation, quantum teleportation and super-dense
coding [1, 2]. At least for pure states and two parties, the
mathematical characterization of entanglement is well es-
tablished. However, it is only recently that researchers
have begun to ask questions about constrained entangle-
ment. That is, entanglement that seems to exist in a
system according to our conventional description of its
quantum states may not exist (or at least may be of a
different nature) because of constraints that limit our
ability to process the quantum information in the sys-
tem. In the case that the constraint (either fundamental
or practical) can be expressed as a super-selection rule
(SSR), the modification to our notions of entanglement
are now well studied [3, 4, 5, 6, 7, 8].

In this paper we consider a different sort of constraint
that can be understood from the following scenario. A
company C manufactures a pure entangled pair of parti-
cles for a pair of customers, and delivers one particle to
each customer. For reasons of economy it manufactures
these particle pairs in bulk, and delivers to a large num-
ber of customer pairs. Unfortunately, its delivery service
is inept, meaning that the probability that any given cus-
tomer pair receives particles that were manufactured as
an entangled pair is S ∈ (0, 1). Moreover, the customers
cannot detect whether an error has occurred. For ex-
ample, the particles may be indistinguishable. Thus the
constraint is caused by a loss of classical information, as
in Ref. [9] (the differences with their situation will be ex-
panded upon later). We prove the surprising result that,
no matter how small the success probability S, C can
still distribute entanglement. We also discuss how this
scenario, although it might sound artificial, may actually
be relevant to the production of entangled photon pairs.

This paper is organized as follows. In Sec. II we
present the scenario in more detail. We then prove in Sec.
III that entanglement distribution is always possible, and
follow this up by determining the optimal entanglement

distribution protocol in Sec IV. Since distillation may not
always be practical, in Sec. V we study the ability of the
mixed-up states to demonstrate nonlocality without dis-
tillation. Section VI concludes with a discussion of the
practical implications of our theory in quantum optics
and ensemble quantum information processing.

II. SCENARIO

We can now be more detailed about the scenario out-
lined above. First, we assume that company C manufac-
tures pure, identical, entangled pairs of qubits. Ideally,
it delivers one qubit from each pair to remote customers,
say, A1 in Albuquerque, A2 in Ajax, A3 in Athens etc.,
and the other qubit from each pair to their respective
partners B1 in Belfast, B2 in Brisbane, B3 in Berlin etc.
This is illustrated in Fig. 1(a), and would allow any pair
of customers, Ai and Bi, to undertake nonlocal quantum
information tasks such as teleportation [10] or violating
a Bell inequality [11].

Now we will define the success probability S of the ser-
vice to be the probability that any pair (Ai, Bi) receives
their intended qubits in a pure entangled state. We will
assume that S is independent of i, and also that a failure
(which occurs with probability 1− S) means that one of
Ai and Bi receive a qubit other than the one intended for
them, so that the qubits are uncorrelated. For example,
for three pairs of customers if S = 1/3 then a typical out-
come would be the case shown in Fig. 1(b), where only
one successful delivery takes place.

In this case illustrated in Fig. 1(b), one pair of cus-
tomers is still happy, as it knows it has received a pure
entangled pair. But what if the customers know that the
delivery service is inept, so that S < 1, but have no way
of knowing whether they actually received their intended
qubits? This is illustrated by Fig. 1 (c), where the cus-
tomers know that S = 1/3 as in Fig. 1 (b), but now all
are unsure as to whether they have an entangled pair.

Note that we need not assume that the qubits intended
for the customers {Ai} are mixed up only amongst them-
selves; they could be mixed up with the qubits for the
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{Bi}. However, for simplicity, let us make that assump-
tion. If, for the moment, we further assume that the
delivery service is otherwise completely inept, so that for
N pairs of customers S = 1/N , then our scenario is close
to that considered by Eisert et al. [9] (which was for-
malized as a SN -SSR in Ref. [5]). The key difference is
that (in our language) Eisert et al. allow for all N of the
Ais to get together to do joint operations on their qubits,
and likewise the Bis. In our scenario this is inappropriate
as the customers are distant from, and unaware of, each
other. Thus, except between members of a pair, even
classical communication is forbidden.

The above considerations establish that in our sce-
nario, each pair of customers can be treated indepen-
dently of each other pair. Thus, to determine whether
any entanglement has been delivered to a particular pair
of customers, whom we will call A and B, we consider
their state of knowledge. Say the pure entangled states
prepared by C are represented by ρAB. Then A and B
know that they received this state with probability S and
that they received uncorrelated qubits (derived by throw-
ing away their entangled partner) with probability 1−S.
Thus, their state of knowledge is

M[ρAB] ≡ SρAB + (1 − S)TrB[ρAB] ⊗ TrA[ρAB]. (2.1)

Here M is a nonlinear map that describes the mixing-
up caused by the inept delivery service. Nonlinear maps
of this sort, with S = 0, have been studied before as a
“universal disentanglement machine” [12]. For a single
system (as opposed to an ensemble of identical systems)
this map is unphysical [12]; physical universal disentan-
glers which operate imperfectly or probabilistically have
also been considered [13].

Näively, we might expect that under almost complete
mixing-up (that is, S ≪ 1) the customers would lose
their entanglement. After all, how could two parties have
nonlocal correlations if their subsystems almost certainly
never interacted with each other in the past? Surpris-
ingly, this is not the case, as we now show.

III. ENTANGLEMENT DISTRIBUTION IS

ALWAYS POSSIBLE

To carry out many QIP tasks it is useful to work with
maximally entangled states such as Bell pairs. However,
Bell pairs have actually been found to be the most fragile
states under the influence of certain types of noise [14].
This suggests that Bell states may be fragile under the
influence of mixing-up as we have defined it. Therefore,
to distribute entanglement when mixing up will occur, it
may be more useful to prepare entangled states of the
form ρAB = |ψa〉〈ψa|, where

|ψa〉 = a|0, 0〉 +
√

1 − a2|1, 1〉, (3.1)

with a ∈ [0, 1]. If a = 1/
√

2 then |ψ〉 is a maximally en-
tangled Bell state. If a = 0 or 1 then |ψ〉 is unentangled.

FIG. 1: In (a) we have an ideal case where S = 1 and all the
customers receive their intended qubits. Situation (b) would
be typical if S = 1/3, only one pair out of three receives their
intended qubits. In reality (c) would occur, the customers
know that S < 1 and are unsure as to whether they have
received an entangled pair.

Note that this state is symmetric under interchange of
A and B, so here we can allow for the delivery service
to mix up qubits intended for the customers {Ai} with
those intended for the customers {Bi}.

To gain an insight into which states will be most robust
we calculate the fidelity [15], f , of the state under M:

f = 〈ψa|M
[

|ψa〉〈ψa|
]

|ψa〉 = 1−3a2(1−S)(1−a2). (3.2)

The minimum of Eq. (3.2) is at a = 1/
√

2, so Bell states
are also the most fragile states under the influence of
mixing-up. By contrast, the fidelity of non-maximally

entangled states with a ≪ 1 remains high even when a
large amount of mixing-up occurs (i.e. S ≪ 1). This
suggests that such states may be best for distributing
entanglement under the map M.

To determine this, we calculate the concurrence C [16]
of M[|ψa〉〈ψa|]:

C = 2Sa
√

1 − a2 − 2(1 − S)a2(1 − a2). (3.3)

When C > 0 we know that entanglement has survived
despite the mixing-up of the qubits. In particular, C > 0
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FIG. 2: Diagram to illustrate conditions under which C can
distribute ‘useful’ entanglement. The colorbar gives an indi-
cation of the amount of entanglement at each point on the
graph. The white region is defined by Eq. (3.4) and demon-
strates where no entanglement is distributed. Above the dark
line Eq. (5.1) is satisfied. Thus above this line undistilled
pairs can be used to violate the CHSH-Bell inequality. In the
gray regions below this line, entangled pairs are distributed.
However it is unclear if these undistilled pairs may be used
for nonlocal tasks. In the region marked by a gray triangle
a LHVT for non-sequential POVM measurements exist (this
coloring is separate from the gray scale).

iff (if and only if)

S >
a(1 − a2)√

1 − a2 + a− a2
. (3.4)

It is easy to verify that for any S, there is a range of a
values that satisfy this inequality. For S ≪ 1, Eq. (3.4)
is satisfied if a < S, as can be seen from the bottom left-
hand corner of Fig. 2. Thus, entanglement can always be
distributed by C by preparing an initial state |ψa〉 with
sufficiently little entanglement (the concurrence of |ψa〉
scales as 2a for a≪ 1). By contrast, C = 0 for Bell pairs
when S < 1/3, due to their fragility.

IV. OPTIMAL ENTANGLEMENT

DISTRIBUTION

We have shown that although inept delivery reduces
the amount of entanglement that can be accessed, entan-
glement can still be distributed for arbitrarily low success
probabilities. However, if this entanglement is to be used
as a resource for QIP we need to know exactly how much
entanglement can be accessed. In the regime S ≪ 1,
Eq. (3.3) becomes

C ≈ 2aS − 2a2. (4.1)

The entanglement [22] of formation EF [17] for a pair
of qubits is a monotonic function of the concurrence, as
shown by Wootters [16]. Thus the maximum of C corre-
sponds to the maximum of EF . It is clear from Eq. (4.1)
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FIG. 3: Diagram of entanglement distributed for given success
probabilities. Curve (a) shows the maximum entanglement
distributed. The curve (b) is an approximate expression for
the maximum entanglement for S given by Eq. (4.2). The
plots (c) and (d) show the entanglement for the specific cases
when C distributes initial states (3.1) defined by a = 1/

√
2

and a = 0.1 respectively.

that C (and thus EF ) is maximized for a = S/2. Thus, in
the S ≪ 1 regime we have an approximate analytical ex-
pression for the maximum amount of entanglement that
can be distributed

Emax

F ≈ S4

4

[

log2

(

1

S

)

+ 1 +
1

4 ln(2)

]

. (4.2)

A comparison of Eq. (4.2) and results for the maxi-
mum entanglement of formation which can be distributed
(determined numerically) is shown in Fig. 3. Thus we
can say that, given a success probability S, to distill
a single Bell pair requires delivery of at least of order
4/S4 log2 S

−1 non-maximally entangled pairs.

V. NONLOCALITY WITHOUT DISTILLATION

In some instances it may be impractical to perform dis-
tillation protocols to retrieve Bell pairs. Another inter-
esting question is therefore whether or not the entangle-
ment present in the initial pairs without distillation could
be useful for some nonlocal task. One test of this is to
see if a Bell inequality violation can be demonstrated.

While entanglement can be distributed for arbitrarily
low S, this entanglement cannot be used to violate a Bell
inequality at low S. For example, it is simple to show that
the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality
[18] is violated iff

S >
1

4(4a4 − 4a2 − 1)(4a4 − 4a2 + 1 −
√

4a4 − 4a2 + 3)
.

(5.1)

For Bell states this requires that S > 1/
√

2, and for a 6=
1/

√
2 the requirement is more strict, as shown by the line
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in Fig. 2. It can thus be seen that relatively high success
probabilities are required in order for the undistilled pairs
to violate the CHSH inequality .

In the gray region of Fig. 2 below this line it is unclear
whether or not the pairs can be used for nonlocal tasks
without distillation. It may be possible to find other
Bell inequalities which would allow a wider class of the
undistilled pairs to be used to demonstrate nonlocality.
However, we have shown that for at least part of this re-
gion there exists a local-hidden-variable theory (LHVT)
for any non-sequential POV measurement [19, 20]. That
is, each party can make an arbitrary measurement, but is
not allowed to communicate the result to the other party.
The proof is straightforward and follows work of Barrett
[20]. He showed a LHVT exists under these conditions
for the non-separable state (a Werner state)

ρB =
5

12
|ψ〉〈ψ| + 7

12

(

I

2
⊗ I

2

)

, (5.2)

where |ψ〉 is a Bell state (a = 1/
√

2), and I is the 2 × 2
identity matrix.

We show that for some values of a, M [|ψa〉〈ψa|] can
be written as a convex combination of Eq. (5.2) and a
separable state:

ρ = M [|ψ〉〈ψ|] = cρB + (1 − c)ρSEP, (5.3)

where 0 < c < 1. For such states ρ it is clear that a LHVT
exists, since such a theory always exists for separable
states. By rearranging Eq. (5.3), we have

ρSEP = (ρ− ρB)/(1 − c). (5.4)

Thus, in order for our LHVT to work, ρSEP should be
a valid separable density matrix. For simplicity, we con-
sidered only ρSEP states that were diagonal.

Under these conditions we identified a finite region of
S–a space for which a LHVT can be found for entangled
states given by Eq. (2.1). While the above reasoning is
straightforward, actually calculating the region is more
challenging. It requires ρSEP to have all non-negative
eigenvalues and trace equal to one. Two of these eigen-
values are found to always be positive. Thus, the region
shown for which the LHVT exists is bounded by three
conditions; that the remaining two eigenvalues are non-
negative (left and right boundaries), and that entangle-
ment is distributed (lower boundary). This is demon-
strated in Fig. 2.

VI. DISCUSSION

We have considered the problem of the distribution of
entanglement to two parties, A and B, by an inept deliv-

ery service that has only a probability S of successfully
delivering the intended qubits. (If it fails, then A or B
receive a qubit intended for some other party). We have
shown that no matter how small S is, entanglement can
still be distributed if the source supplies identical pure
qubit pairs that are non-maximally entangled.

It might be thought that this is an artificial problem,
but that is not necessarily the case. Consider the produc-
tion by parametric downconversion of entangled pairs of
photons [21]. In some experiments, these photons may
enter many transverse spatial modes, but the detectors
used in the experiment may not resolve these modes (i.e.
all modes enter the detector). In the limit of small flux,
each photon detection is well separated in time and so
it is easy to tell that a coincidence count (counts at the
two detectors within some time-window) corresponds to
an entangled pair. But in the limit of high flux, a co-
incidence thus defined might actually be due to photons
from two different entangled pairs (with different trans-
verse spatial modes). That is, there is only a probability
S (that could be quite low) that a pair of photons iden-
tified by their arrival time is actually a pair produced
by downconversion. Thus the scenario we have described
in terms of an inept delivery service could arise natu-
rally in a quantum optical experiment. The solution to
the mixing-up problem that we have identified might be
of practical use in these or similar quantum information
experiments.

We conclude by returning to the situation of Eisert et

al. [9], as mentioned earlier, where there are N pairs
of customers and S = 1/N . In that case, the result we
have obtained for Emax

F
(4.2), multiplied by N , is (ignor-

ing the distinction between EF and ED) a lower bound on
the amount of entanglement distillable in the situation of
Eisert et al., where the A customers can all get together
and likewise the B customers. This might seem useless,
since the distillable entanglement was calculated exactly
in Ref. [9] (see also Ref. [5]). However, our Emax

F
× N

is also a lower bound on the entanglement distillable by
{Ai} and {Bi} under the stronger constraint that they
can only implement operations on individual qubits, not
collective (entangling) operations on all N qubits (as al-
lowed in Refs. [5, 9]). The relevance of this stronger
constraint to NMR quantum information processing will
be discussed in a future work.
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