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Abstract. The semi-classical stability of several AdS NUT instantoiss studied.
Throughout, the notion of stability is that of stability dtet one-loop level of Euclidean
Quantum Gravity. Instabilities manifest themselves asatieg eigenmodes of a modified
Lichnerowicz Laplacian acting on the transverse tracepesturbations. An instability is
found for one branch of the AdS-Taub-Bolt family of metriagat is argued that the other
branch is stable. It is also argued that the AdS-Taub-NUTilfaof metrics are stable. A
component of the continuous spectrum of the modified Lictwerz operator on all three
families of metrics is found.

1. Introduction

Motivated by the AdS/CFT conjecturél[1], there has recebi¢n much interest in the
two parameter AdS-Taub-NUT familyof Riemannian biaxial Bianchi-IX metrics satisfying
the Einstein equations with negative cosmological corstend non-trivial NUT charge
[2,13,[4,[56[7].

Upon the imposition of a regularity condition such metrigsdk into two one parameter
classes. The first class (AdS-Taub-Nut) have self-dual Weysor and contain a nut.
The second class of solutions (AdS-Taub-Bolt) contain &, hbis class splits further into
two branches. This is analogous to the case of AdS-Schwaldssolutions at a given
temperature, where the réle of AdS is played by the AdS-Tdub The AdS-Schwarzshild
solution with a smaller mass (and smaller horizon) is unsetahd it's action is greater than
that of both AdS and the other AdS-SchwarzsHild [8, 9]. We éirgimilar situation for AdS-
Taub-Bolt.

In 4], Hartnoll and Kumar conjectured, based on the KlelvaRolyakov version of
the AdS/CFT; correspondence, that the global minimiser of the actiontierAdS-Taub-
NUT class of metrics should be stable. [nl[10], the stabiitsome of these spaces against
scalar perturbations and brane nucleation was discusgezbriBidering a one-loop correction
to the bulk gravitational partition function, we shall irstgyate the semi-classical linear
stability of such spacetimes, using techniques developadub[11] and applied to the case

1 Following [Z], we refer to the full two parameter family as 8«raub-NUT, reserving AdS-Taub-Nut for the
regular solution containing a nut
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of Euclidean Taub-Bolt by Youn@T12]. These techniques rage been applied to the case
of Lorentzian Taub-NUT recently by Holzegél]13]. The crite for instability is that the
modified Lichnerowicz operator

Apha, = =V°Vehay — 2Ragah®™ (1)

acting on transverse, trace-free symmetric tensors shmaye no negative eigenmodes. We
shall investigate the spectrum of this operator on metricupeations of the AdS-Taub-
instantons which preserve thite/(2) symmetry. We find a negative mode for one of the
instantons indicating instability for all values of the ooslogical constant. We also find part
of the positive spectrum of the modified Lichnerowicz operdbr all instantons in the class
under consideration.

In Section 2, we give a brief overview of the AdS-Taub-Nut &utb-Taub-Bolt spaces,
stating some results which we will later require. In SecBpmve introduce the method used
to examine the stability of the spaces and we present arbifistéor one branch of the AdS-
Taub-Bolt spaces and argue that the other spaces are ¥irstale. In section 4 we present
an alternative viewpoint, confirming the claims of section8Section 5 we investigate the
continuous spectrum of the operaf&))g.

2. NUTsand Boltsin AdS space

The metric for both AdS-Taub-Nut and AdS-Taub-Bolt in foumdnsions can be put into the

form:
1

A(r)
whereo; are the left-invarianbU (2) one-forms. The functiond(r) and B(r) are given by

r? 4+ N? — 2mr + (72(r* — 6N?r? — 3N*)

B(r) =r* — N?, 3)

whereN is the NUT charge angh is the mass. This metric is Einstein, wit}),, = —2g,...
The fixed point set of thé/(1) action is given by the solutions, = r, of A(r) = 0. If
B(ry) = 0, the fixed point set is of zero dimension and is known as a rfuB(+,.) # 0,
the fixed point set is two dimensional and is known as a boltr Agproaches., we will in
general have a conical singularity unle$g-) satisfies the regularity condition
1
/

|A'(ry)| = N (4)
This amounts to a relation betweenand .V, which can be solved and we find that the number
of solutions depends on the value[f@f

For all values ofV and? there is a solution, called the AdS-Taub-Nut solution where

2 2
S W%:ﬁﬁ7gﬁl. 5)

ds? = ——dr? + AN?A(r)o2 + B(r)(o? + o), ()
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Clearly we haveB(N) = 0, so we have a regular nut at= r,,. We can also find two bolt
solutions, which | shall call the AdS-Taub-Bolsolutions. They are given by:

02 & \/0* — 48N2/(? + 144N*
12N ’
ri, + (02 — 6N?)ri, + N?((* — 3N?) ®)
20214 '
Clearly these equations only make sense if the quantity ruthgesquare root in the first
equation is positive. This restrictg N to the range

% >21/3(2+ V/3) ~ 6.69. ()

Thus we find that requiring that the metricl (2) be regularrigtst the freedom quite
considerably. For any given value éf, there are eithet or 3 regular metrics in this family,
excluding the critical case wherg, = r,_. Itis possible to calculate the action for these
spaces, but we shall postpone this until section 4.

It is useful to consider the limit — oo, as we expect to recover the Euclidean Taub-NUT
and Taub-Bolt solutions. For the AdS-Taub-Bottase, this limit does not exist ag, — oo
as/ gets large. However, for the other two cases we can takemhitsaind we find for the nut
case:

Tyt =

mpyt+ =

r—N

r+ N’ (8)
which gives the well known form of the metric for the self-tillaub-NUT instanton. For the
AdS-Taub-Bolt case, we find:

m, — N, A(r) —

5 r? —2Nr 4+ N?

Tp— — 2N7 my— — ZN7 A(’I“) - r2 — N2 ) (9)

which gives the metric for Euclidean Taub-Bolt. This willopide a useful check on our
stability results as for vanishing, Taub-NUT has a self-dual Riemann tensor, and hence is
linearly stable[[14]. In[[I2] an unstable mode for the TaulltBhstanton was found.

3. Stability

3.1. A criterion for instability

Instabilities of a physical system may make themselves knasvan imaginary part of the
partition function for the system [15, 116]. The partitiomfion for Euclidean quantum
gravity is given by:

7 = / d[gle=5, (10)

where the integral is taken over all Riemannian metrics estibjo appropriate boundary
behaviour and periodic in Euclidean time. The Euclidearoads given by:

Slg) = Gi y /M AV G (R—20) — —— [ dsvik. (11)

87TG OM
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Unfortunately this is not positive definite. Under a confatrtransformation of the metric,
g = Q2%g, where for simplicity we assum@ = 1 on a neigbourhood af.M the scalar
curvature transforms like:

R = Q2R — 6Q7°V*V, . (12)

Thus we find

Ig] = — ! / dV/g (R + 6Q,0%) — L[ asvik. (13)

167G J g “ 817G Jom

So by taking to vary quickly, we can makg|¢'] as negative as we choose. This problem can
be circumvented by an appropriate choice of contour, bytiorthe semi-classical (one-loop)
approximation[[1l7]. For a semi-classical approximatior, expand the integral [{]L0) about
the critical points ofS[g], where we expect the dominant contributions to the intedraése
satisfy

08

0Gab
i.e., the classical Riemannian vacuum Einstein equatidrsis in order to find the semi-
classical approximation tg, one expands in small perturbations about the classiaatisns:

=0— Rab = Agaln

gab = Gab T hab7
S[g] = Solg] + Sa[h] + O(R?), (14)

whereS;,[h] is second order in the small perturbatikoa. We truncate the series féfg] and
integrate oveh,, to get

Z = Zitgop = New %l / d[hJe™>l", (15)

where the integral is to be taken over physically distinecty®ationsh,;,. The actionS;[h] is
invariant under gauge transformations which correspomafititesimal diffeomorphisms:

:zb = hab + va‘/b + vb‘/a-

In order to deal with this, we follow [18] and use the Fadeep® gauge fixing technique.
The gauge fixing condition will be:

V. (h“b — %gabh) =W, (16)

wherelV is an arbitrary vectorj is an arbitrary constant and = h?, is the trace of the
perturbation. The standard Fadeev-Popov method allowsneswrite the functional integral
@@3) as an integral over all fields,,, but with an altered integrand:

Z11o0p = Ne ™0l / d[h)(det C)e~ et (17)

We now decompose the metric perturbation into a transveessgless paxb,;,, a longitudinal
traceless part generated by the vecioland the traceh. Further, a Hodge-de Rham
decomposition can be performed @130 that

Ng =1, + Vax, with V. =0.
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We can then write the effective action as:

1
12 eff. = _16—7T dVﬁz, (18)

with
_ _1 ab cd 1 o ab o abe fd
Lo = =707 Gapead™ + ShEh = 27D (x) Do (£'x) = 7D (1) Dy ((C2)"“11a) (19)

where~ is a constant related to by 5 = 4v/(1 + ) and we have defined operators

1— 3y 1
F _ LV — A,
16y VeV 4
1
Dab = Qvavb - §gabvevea

1
Qabe(ve) - 5 (va% + vaa) s

<C2)abvb = - (veve + A) Vaa
Gabcd¢0d = - veveﬁbab - 2Racbd¢0da (20)

whereV is a divergence free vector. It is possible to write tdet ') factor in (IT) as a
functional integral over anti-commuting vectors. Applyia Hodge-de Rham decomposition
one finds

(det C) ~ (det Cy)(det F).
Finally, evaluating the Gaussian integrals[inl (17) we find
Z1100p ~ (det G) 72 (det Cy)?2. (21)

Any zero modes of the determinants[inl(21) should be prajeate. The determinants can be
regularised by g-function regularisatior [18]C, is a positive semi-definite operator on the
space of divergence free vector fields, with zero modes sporeding to Killing vectorsG
however is not positive definite and can in fact have a negatigenmode. Such a negative
eigenmode would introduce an imaginary part to the parifisnction and thus herald an
instability. For example the flat Schwarzschild solutios bhanegative eigenmode. It is to be
expected that the partition function be pathological iis tase since the canonical ensemble
for black holes breaks down due to the fact that they havetivegepecific heat.

Thus in our search for instabilities we can restrict to pdwations h,, which are
transverse and tracefree. Our criterion for instabilitsethat there exist negative eigenvalue
solutions to the eigenvalue equation:

(ALh)ab - 2Ahab = _vevehab - 2Racbdth - )\haba (22)

where we have re-expressédn terms of the Lichnerowicz Laplaciah,, [19]. This equation
is consistent with the Transverse Traceless condition.

A negative eigenmode di{R2) corresponds to a directioniwitie space of gauge fixed
metric perturbations along which the classical solutjgns a local maximum. The criterion
that

A = A, — 20N >0
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for stability may be arrived at from a more geometric pertipe¢see for example Besse [20])
which avoids the Fadeev-Popov procedure used above. Trespme cases in which it can
be shown thaﬁL is positive definite. These include the case whgrhas self-dual Riemann
tensor (sometimes called the half-flat conditian) [14] alst he case wherg,, is Einstein-
Kahler [21]. In both these cases, the existence of a cawdyieonstant spinor is used to relate
the eigenmodes ak; to those of scalar Laplacians acting on charged fields.

3.2. Hu’s Technique

Hu [11] proposed a method for separation of variables ofdeaquations in a homogeneous
space where the metric can be written in the form

ds® = dr* + Jijo'o”, (23)
wherei,; = 1,2,3 ando’ = o, are again the left invariant one-forms ¢it/(2). This
was generalised by Youn{ ]12] to the case whejgeis permitted to depend on. The
metric perturbation is expanded in terms of the Wigner fiomst, Dy 1,7 (0, ¢, ) which
are the analogue of® of the spherical harmonics ,,(6, #). We concentrate on diagofial
metric perturbations with the lowest “angular momentumh”= M = K = 0. These are
the perturbations which presen#/(2) symmetry. The resulting equations, along with the
transverse and traceless conditions for the general nfetric (@) are given in the Appendix.

We first consider thé1 and22 equations. Taking the difference &f{A.1) and (A.2) we
find a second order differential equation #6r= h;; — hys. We can put this into Schrodinger
form:

d*x
B dr?
via the substitution¥” = fy anddr = gdr,, for some suitabl¢ andg. When we do this, we
find thatV' (r(r.)) is a positive function for > r, so that no normalizable solutions [024)
exist with A < 0. This means that in the search for a negative eigenmode®i@2nay set
hll = h22-

We now consider the other diagonal mode. Setting= h42, we can use the constraint
equations[(Ab),[[Al6) with the 00 equation (A.3) to decaupl second order differential
equation inhgg from the others. If we can solve this, we can fihd, hyy and hszz from
the constraint equations. Sindel(22) is consistent withrdmesverse traceless condition, we

know that [A%), [A®) and{AI3) impy{Al1l) and{A.4). Thisn be checked explicitly. The
equation we decouple may be written:

+ V(r.)x = \x, 0<r, < oo, (24)

a(r)hge + b(r)hge + () hoo = 0, (25)
where differentiation with respect tas denoted by a prime and the coefficients are given by:
a(r) = A,

b(r) = 3A' _
() =34+ -+ —p i ip B BA — AB'

¢ The equations for off-diagonal perturbations can be pat 8throdinger form with strictly positive potential
(seelZh)), for all three metrics considered here and soatayive rise to negative eigenmodes.

AB'  B(A? —244") A <2AB’2 — BA'B' — 2ABB”)
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c(r) =A+ A% + AL ABT + A" + 3 <7BA/ i AB/)
24 B B 2A \ BA' — AB'
BA'B' +2BAB" — 2AB? (2BA’ + AB'
- B ( BA — AB ) :

the rest of this section will consist of an analysis of thisa&tpn.

3.3. AdS-Taub-Nut

In the case wherel(r) and B(r) are given by[(R) with[{5) we can cast equatifnl (25) into
Schrodinger forml{24) wher¥ is once again found to be positive on the range r,. Thus

for AdS-Taub-Nut we have checked all the possible TT pedtiolns withJ = K = M =0
and found that none give negative eigenvalue solutiond_®), (thus there is no linear
instability due to perturbations of this type. This is in egment with the result that the
¢ — oo limit yields a (linearly) stable metric.

One would normally expect the eigenvalues of a Laplaciamaipeto be bounded below
by the most symmetric modes. In our case that would beSiti€2) invariant modes. In
the case of the scalar Laplacian acting on a space with nggteén by [2) this can be seen
explicitly:

— V2% = — V2 (¢ (r)Dic(0, 6, 1))
= (=V2¢"(r)) Dk (0, ¢, 0) — 2 (00" (r)) (04Dx (0, ¢, 7))
— " (r)V?Dk (0, ¢, )
= (=V2 (1) Dk (0,6, %) + 6" (r) (-V*Dk(0,6,4) . (26)

It can be shown that—V?Dy) is positive for this metric form. This separation into a eddi
part and an angular part does not occur for the the Laplacimgaon symmetric tensors as
there are extra terms introduced by the connection. It hblsaen possible to show explicitly
that theSU (2) invariant perturbations give a lower bound ftyp , but one would still expect
this to be the case. Increasing the spin of the perturbatiotes introduces a more rapidly
varying angular dependence, which one would expect to aseréne eigenvalues ofV? and
hence ofA;.

We therefore conjecture that; is positive acting on all metric perturbations and thus
that AdS-Taub-Nut is stable. This may be related to the fzat the Weyl tensor is self dual
for the AdS-Taub-Nut space. In the Euclidean case, the fielann tensor is self-dual and
this is known to imply stability[[T4].

3.4. AdS-Taub-Bott

In the case of AdS-Taub-Bolt when one changels{25) into Schrodinger form, one encminte
a divergent potential. In order to proceed, we must use nigaileéntegration techniques. If
we make the substitution= z/V, we find that the equations depend &nonly through the
ratio % We can therefore scal€ out of the problem and s&f = 1 without loss of generality.
We must now consider the singularity structure of the déffeial equation[{25). In the region
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of interest to usy > r,_, we find that the equation has 3 regular singular points, atr;,..
and infinity, wherer,_ < r,;. < oo. Other singular points outside of the range of interest
preclude the possibility of an analytic solution.

We consider first the regular singular point-at r,_. Near to this point, the differential
equation has the asymptotic form:

4 2

Substitutinghg ~ (r — m,— )¢, we find the indicial equation
o +3a+2=0,

with solutionsa = —1 anda = —2. Thus there are two independent solutiondaf (25) that
behave like(r — ,_)~t and(r — r,_)~2? asr — r,_. We impose a normalisation condition
on the perturbation modes given by

/ dVhgh® < co. (28)

Using the constraint equations, we can show thahtheontribution dominates the integrand
in a region just outside the bolt. Using the fact tiet =  /gdi dfdpdr, wherey, 6 andg are
the usual Euler angles a51/(2) and the form of the metri€]2) with the constraint equations
(AT, [A8) we can show that this integral coverges at 7,_ if and only if hog ~ (7 — r,_)°
wheres > —3/2. Thus only one of the two independent solutions at r,_ represents a
normalisable perturbation — we must pick the solution thedtaves likehgy ~ (r — 7, )~*
nearr = r,_. This provides us with a stepping off condition for our nuroarintegration.
We can perform a Frobenius expansion of the solution ab@utdfular singular point and
then use this to calculate,, andhg, atr = r,_ + € wheree is some small number, taken to
be107°. This deals with the first regular singular point.

It can be shown, by a similar method to that used abovelifyadndhy,, are bounded as
r — T, SO NO special considerations are required for the numéniegyration through this
point.

Finally we need to take account of the regular singular paimfinity. In the limit that
r — oo, the differential equation has the asymptotic form

12 28 4+ 12X

Substitutinghgg ~ r* we find the indicial equation:
o + 1la+ (28 + £2)) = 0,

with solutions

_ —11£/9— 46X
2

Using the constraint equations, we find that the integran@Z8) is dominated by the

contribution fromhss ~ r%hq,. This translates to a requirement thgg ~ 7% with 3 < —% in

order that[(ZB) is satisfied. So we see that only one of theridepgendent solutions at infinity

will give a normalisable perturbation. We will need to matble normalisable solution at

(30)

(O2S
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T

Figurel1. A plot showing the negative eigenvalug,against for AdS-Taub-Bolt Space

infinity to the normalisable solution &t and this matching, if it is possible, will determine
the value of\.

In order to ascertain whether there exist negative solsgtion\, we perform a numerical
integration starting at,_+e, with initial conditions determined from the Frobenius arpion
aboutr,_. This determines the solution, up to a arbitrary multigliGaconstant as we can
determinehy, and all its derivatives here. Having chosen the normalesstlution at the bolt,
we need to check that the solution is normalisable at infifiibe only parameter we still have
available is\. Asr — oo the solution must have the asymptotic form found above, it w
in general be a linear combination of the two independennasgtic forms.

hoo(’l“) ~ k‘()\)’l“our + l()\)ro‘*, (31)

wherea, > —11/2 anda_ < —11/2 are given in equatio.{B0) arid\), /() are constants,
which we assume to depend continuouslyonThe normalisation condition requires that
A = )Xo, Wherek()g) = 0. Since we are only performing a numerical integration, s
possible to find the form of(\) explicitly, but we can find an interval within whick, must
lie.

If we considerf(r) = r'*/2hg(r), then f(r) will generically tend to either positive or
negative infinity, depending on the sign/of\). If we can find numberg; and )\, such that
k(A1) has opposite sign tb()\;), then we can deduce the existence of a roat(of) in the
interval (A1, \2), by the Intermediate Value Theorem. This procedure waseémphted using
the computer package Mathematica, and negative eigersvahye been found for values of

¢ on the entire rang®y/3(2 + v/3) < £ < co. A plot of these negative eigenvalues is shown
in Figure 1, together with a best fit curve.

We find that a¥ — oo, we have that\ — —0.20 approximately. This is consistent
with the findings of Roberta Young12], who found that Eueba Taub-Bolt had a negative
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eigenmode in this sector with~ —0.20. We also find that aé approaches the critical value
where the AdS-Taub-Boitand AdS-Taub-Bott spaces are the same, the negative eigenvalue
tends to zero from below.

3.5. AdS-Taub-Bott

The final case, where the bolt is located-at r,, is similar in many ways to the previous
case. We find the same singularity structure and asymptwoties for the perturbation. We can
proceed in exactly the same way as above, but we find no negatjenvalues. We therefore
conjecture that this spacetime is stable, as it appearsvi i@negative eigenmodes in the
lowest “angular momentum” state.

s
8 _
6 i ~-—
----------------------------------------- Bolt(-)
L N T B
2 L
NUT
6. 69213 7. 30Q56
- 2 L
-4r Bolt(+)

Figure 2. A plot showing the actions — Syyr against for N =1

In Figure 2 we show a plot of the action of both AdS-Taub-Bplces againgt, with
the action for AdS-Taub-Nut subtracted. This will be cadtad in Section 4. The dotted line
represents the unstable AdS-Taub-Bdpace, the horizontal axis the Taub-NUT space and
the other curve AdS-Taub-Balt The thicker line denotes the global minimizer of the action

We see here two interesting features. Firstly we note that=at2,/3(2 + v/3) we have a
bifurcation, with the two Bolt families appearing, with ostble and the other unstable. We
also note that at = 2+/7 + 21/10 there is a phase transition from AdS-Taub-Nut as the global
minimiser of the action to AdS-Taub-Bdlas the global minimiser. This is the NUT charged
version of the Hawking-Page transition for AdS Black Hol@k [
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4. Another Perspective on Stability

We will now present an alternative argument, which repreduall the features of the plot in
Figure 2.

In constructing the nut charged AdS instantons considebbestea the usual technique
(outlined in Section 2) is to consider a metric of the foilth \@)ich satisfies the Einstein
equationsi,,, = —Z%g,w. Then one imposes the condition of regularity to reduce tirelver
of solutions to those given above. Here we shall consideméyaf metrics which are regular
everywhere, with a bolt (or possibly nut) locatedrgtwhich is treated as a free parameter.
The AdS-Taub-Nut and Taub-Baolt]-AdS instantons correspond to particular choices,of
We can then calculate the action for this family of spacesirag a function of, and we
expect it will be locally extremized at the already knownued ofr, which give solutions
of the Einstein equations. This corresponds to taking & glarameterised by, through the
space of metrics containing a bolt or a nut.

Our metric ansatz will be:

1
45* = e +ANPAW)o3 + B (o} + o), (32)
with
(r —mry)(ar + B+ 72(r + rry))
A(T) = r2 — N2 )
B(r) = r? — N2,

We then impose regularity at = r, and require the mass to be, by considering the
asymptotics. This gives us the metric functions:
(r—ry) (AN (r — 1) ro(r + rp)> — 02 (4mN (ry — ) + (r +7b) (n? — r2)))
402N (r2 — N?) 1y ’
B(r) =r* — N2 (33)

We are now ready to calculate the action. The Euclideanragtigiven by:

A(r) =

1 6 1
= ——— [ d ) - — hK 4
8 = Stk + Sewt. = — 75— y Vg <R + zz) &G L, dSVhEK, (34)

which is the standard Einstein-Hilbert action togetherhwihe Gibbons-Hawking-York
boundary term. It is well known that this integral does nobtwa@ge and so some means
of regularising the action is required. The method used Wwasdf counterterm subtraction
proposed by Emparan, Johnson and Mylers [22]. This was alsalfmdependently by Mann
[23]. The calculation proceeds much as their calculatiornte action of Taub-NUT. We find
that the action of the metric defined lhy132) ahd (33) is:
S:t—]j(rg’—3N2rb)+N2+4Nrb—r§. (35)
We note that this does not depend »@n which is also a free parameter of this family of
metrics. The variation of this reduced action alone will determinemn, for that we require
the full Einstein equations, which foree to take the NUT or Bolt values at the critical points.
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Settingr, = xN,definingy = ¢/N, and using the additive freedom to set= 0 for AdS-
Taub-Nut we find

4
ﬁzﬁ(x3—3x+2)—3+4x—x2.

-2t 2 oo

Figure 3. A plot showingS/N? against: for several values gf = (/N

So we see that gs is varied, the graph of/N? will change. A plot ofS/N? against
x for various values of: is shown in Figure 3. Also included is a dotted curve showirgy t
locus of the extremal points of the function @varies. We see that the point= 1, which
corresponds to AdS-Taub-Nut is always a minimum since wet exdude the region < 1
from consideration as these metrics are not regular. Foll gnthis is the only minimum.
As we increase:, we find that a pair of extrema, one maximum and one minimuneapat
1= 1, Where

11 = 21/3(2 + V/3), (36)

which is precisely the value we would expect from the stashdanstructions for AdS-Taub-
Nut and AdS-Taub-Bolt. If we think of this functiofi(z)/N? as defining the dynamics of
some system by

i = —S'(x)/N?,

then this bifurcation is of the form known as a saddle-nodigrbation, since it produces two
new fixed points, one stable (a node) and one unstable (aedaddf course we have no
formal dynamics on the space of metrics, but we still expdotal maximum to correspond
to an unstable metric as it corresponds to a direction daritrig an imaginary part to the
partition function. Thus we shall refer to this bifurcatiaa a saddle-node bifurcation. We
also find that the maximum occurs at precisely r,_ /N and the minimum at = r,, /N,
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confirming our previous result that we expect the AdS-Taoli-Binstanton to be unstable
while the AdS-Taub-Bott instanton is stable.
We also note a global bifurcation when= 1, where

pe = 21/ 7 + 2V/10, (37)

when the global minimum moves from = 1 to x = n,, /N, which corresponds to AdS-
Taub-Bolt". This again accords with what we expect from previous aiabsd corresponds
to the Hawking-Page type phase transition.

These observations accord nicely with the general argugiean in section 6 of[[24]
for the production of negative modes of the Lichnerowiczraps at bifurcation points in
parameter space, in particular, from figure 1 we find that dgative eigenmode tends to zero
as we approach the bifurcation.

Unfortunately this analysis cannot replace that of the ipteyv section, since we have
not explicitly found a normalisable negative model[afl (22) dgerturbation about the AdS-
Taub-Bolt instanton. It is possible to find the linearised perturbatd the metric at this
point using our analysis, but this perturbation is not ndisahle. It is however not in the
Transverse, Tracefree gauge and it is possible that in theppate gauge this perturbation
does give a normalisable mode.

5. The Continuous Spectrum of EL

We have been so far concerned with looking for eigenvaluegpbn the AdS-Taub-Nut
and -Bolt instantons. In the case of an elliptic operator amoa-compact manifold, the
spectrum may also include a continuum of approximate emjeeg. As an example, the time
independent Schrodinger operator for the Hydrogen ataarLiplacian type operator acting
onR3/{0}. As is well known, this has a countable set of negative eigle®s corresponding to
the bound states. The spectrum however includes a contintipasitive “eigenvalues” which
correspond to free particles moving in the Coulomb poténtiaese are not true eigenvalues
since they do not correspond to normalisable eigenfunstfaavefunctions). The sense in
which they may be considered part of the spectrum is giveovbeWe shall show that the
continuous spectrum ok acting on any of the three spaces considered above inclbdes t
ray {\ € R: X\ > 9/4i%}.

5.1. A Little Functional Analysis

We can think of the space of gauge fixed, finite metric pertiwha as a Hilbert space, defined
by:

H=1{hp € T"MQRsT*"M : Vg =0,h%, = O,/ haph®dV < oo}, (38)
M

with L? inner product given by

(h, k) = /M hapk®dV. (39)
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ZL is then a linear operator frofH, to H,, where byH; we mean
H; ={haw € H: 0., ...0.hq eXxistand are continuoyis (40)

'H, are dense subsets Bf with respect to the norm topology, where the norm is defined as
usual by:

I = k= [ hatav (41)
M
A linear operatod : H — 'H is said to be bounded # & such that

[Azl| < k||,  VeeH, (42)

an operator which is not bounded is unbounded. We define thetrspn of A, o(A) as
follows:

A ¢ 0(A) < the following properties hold:

(i) (A— XI)~!exists,
(i) (A— XI)~!is bounded,
(i) (A — AI)~!is densely defined (i.e. defined on a dense subskf of

The set ofA such that A — A\I)~! does not exist is called the point spectrumiofPo(A). the
set of A such tha{ A — A\I)~!) is unbounded is called the continuous spectrum of'o(A).
We shall not discuss the third condition.
Lemmab.1. Given\ ¢ Po(A), if there exists a sequeneg € H such that
A— M)z,
ICA=ADall o s L e
[l

then\ € Co(A).

Proof. Definey,, = (A — \I)z,, by assumption as — oo

[Ynl] [(A = A"y
— 0 = — 00,
[(A =AD" ya| [l
but this clearly cannot occur {fA — \I)~! is bounded, since if this is the casek such that
_ -1
[(A=AD ]l _
Ynll

Thus(A — AI)~! must be unbounded, henges C'o()). O
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5.2. TheA; Operator

We now consider the continuous spectrunﬁqj We will restrict attention for the moment to
perturbations of the form considered in section 3. Thesgamerated by the,, component,
which has to satisfy equatiof{25). We first define the fumstjg, (x) by:

p

1 ifr<n
pn() =4 1— K [T exp [—(x_ln)Q — (x_nl_l)Q dr fn<r<n+1 (43
\ 0 ifr>n+1

with K chosen so that,(n + 1) = 0. These functions are everywhere smooth on the real
line. For\ > 9/41* we definef(r) to be the solution of{25) which gives a finite contribution
to (h, h) atr,. This generates a perturbation which satisfies

(AL — M )hg, = 0.
However thish,;, is not an element of{ since as- — oo we have
sin(alogr), (44)
wherea = %m is a constant. We find that for largecounting powers of gives:

f(T) ~ pT_11/2 COS(a log T) + qr‘11/2

hash™ /G ~ fr10 (45)
r
so that(h, h) does not converge. We defirig(r) by
fu(r) = pu(logr) f(r). (46)

Settinghoy = f,, generates a perturbation which we dgjj via the constraint equations and
we claim that

H(&L ~ AR,

17
It is easily seen thdth!’, || — oo since the integral if{~”, || is bounded below by the integral
for ||hal|| cut off atr =e™. It suffices then to show thz#(ﬁL - )\I)hgb‘ is bounded as

n — oo. Clearly(A, — M)h?, = 0on{r, <r <e"} U {e"™ < r} sowe need to estimate

/:w [(gL _ )J) h"} N [(KL — ,\[> hn]“b Q- H(&L Y

—en

— 0, as n — oQ.

2
, (47)

for largen. In this limit, we can use the largeasymptotic expansions to estimate the leading
order behaviour of this term. Substituting these in, we fivat:t

_ 2 entlt
H(AL . )\I)h”H ~ K / (Lf)?rdr, (48)
with
Lfn=712f"4+12rf + (28 + IPA) f,, (49)
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the leading order expansion &{25) and whérés defined by:
fu(r) = (pr~ 2 cos(alogr) + qr~ % sin(alogr)) pn (log ). (50)

Under a change of variables= log r the integral in[[4B) becomes:

8n«b»l

/ (Lf)*r'0dr = /n

= /0 {po(W)(psinaly +n) + qeosa(y +n))

n+1
{p" (z)(psin az + g cos az) + 200, (2)(gsin ax — pcos ax)}’ da

+2apy(y)(gsinay +n) — peosaly +n))}’ dy, (51)
sincep,,(z) = po(x —n). Now for all » the integrand is bounded since
|po(2)| <6,
|pg ()] < 60,

thus there exist constantsand# such that
H(&L A<, v on>a (52)

We can now apply lemniaB.1 to the operatgr and we find that fon > 9/412, (A, — AI)™!
is unbounded, henc\ > 9/412} C Co(Ay).

This result makes no use of the valueiobr the location of the zeroes df(r), so it holds
for all three of the instantons considered here. It is alssside to perform this analysis for
the otherSU (2) invariant modes of the perturbation and we find exactly tmeesaondition
on X in order that it be in the continuous spectrum.

6. Conclusions

We have studied the semi-classical stability of the AdSbfaut instantons and the two
branch family of AdS-Taub-Bolt instantons and we have foanmkegative mode of (22) for
the AdS-Taub-Bolt instanton, implying that this instanton is unstable. Fa &dS-Taub-
Nut and AdS-Taub-Bolt instanton we have argued that they are (linearly at leaa)est We
have also justified this by considering a family of regulaitmgs, not necessarily satisfying
Einstein’s equations, which contains these instantonp@sa cases. This gives an intuitive
sense of how the saddle-node bifurcation in the p plane arises, as well as the Hawking-
Page type bifurcation which occurs. We have also found thatafi three instantons the
continuous spectrum includes the ray > 9/41%}.
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Appendix

The following are a set of differential equations governing./J = M = K = 0 piece of the
tensor harmonic decomposition of the equation

_vevehab - 2Racbdth - )\haba
for the metric

1
2 _

ds* = A0
We suppress the dependence ofi(r) and B(r) and use a prime to denote differentiation
with respect to-. These are taken frorh [IL2], with some typos corrected.

11 Component
a(’l")h/{l + B(’f’)hlll + E(’f’)hoo + E(’f’)hll + E(’l")hgg + T(T)hgg = _)\hlla (Al)

dr® + 4N?A(r)oz + B(r)(o? + 73).

with
a(r) = A,
_ B
A AT
biry =A"—A 5
2 2
o) = — 2448 + BTy pepr
_ 2 AB" AB 1 (B\? 4N?A 1
W =5""B B +§A<§) TTE A
_ 1 AN?24 1, (B’
‘) =5Na T T (E) ’
- AB 1
I ="gva™ 5
22 Component
a(r)hgz + b(’f’)hlz2 + C(’f’)hoo + d(’f’)hll + Q(T’)hgg + f(’l")hgg = —)\hgg, (A2)
with
a(r) = a(r), d(r) = e(r),
bir) = b(r), and e(r) = dr),
c(r) = ©r), f(r) = f(r)
Where the overbar denotes the coefficients[farl(A.1).
00 Component
a(r)hgo + b(r)hge + c(r)hoo + d(r) X 4 f(r)hss = —Xhoo, (A.3)
with
a(r) = A,
AB’
b(r) =3A" +
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A2 A'B’ B 2
c(r) = + —A <—) + A",

T 24 B B
A/B/ B/2 B//

)= ~ap T 1B 15
A/2 A//
1) = soveas ~ Tonveae
andX = hyy + has.
33 Component
a(r)hys + b(r)hys + c(r)hoo + d(r) X + f(r)hss = —Ahss, (A.4)
with
a(r) = A,
b(r) = — A + AB

) o
c(r) =8N?AA? — 16N?A2A”,
_ 16N*A?  2N?AA'B
B3 Bz

A% A'B" 4N?A

2A B B2’

andX = hyy + has.

Constraint Equations

The above system of equations is consistent with the trassand tracefree conditions
on h,,. This gives us the constraint equation

1 1
Ahgo + E(hu + hag) + mhzﬁ =0, (A.5)
coming from the traceless conditian, = 0, and
3 AB’ B’ A
Ah60 + (§A, —+ B ) hOO — @ (hll + h22) — mhgg = 0, (A6)

which comes from the transverse conditiGph® = 0.
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