852 research outputs found

    Neutrino Oscillations Induced by Gravitational Recoil Effects

    Get PDF
    Quantum gravitational fluctuations of the space-time background, described by virtual D branes, may induce neutrino oscillations if a tiny violation of the Lorentz invariance (or a violation of the equivalence principle) is imposed. In this framework, the oscillation length of massless neutrinos turns out to be proportional to M/E^2, where E is the neutrino energy and M is the mass scale characterizing the topological fluctuations in the vacuum. Such a functional dependence on the energy is the same obtained in the framework of loop quantum gravity.Comment: 5 pages, LaTex fil

    Dynamical Formation of Horizons in Recoiling D Branes

    Get PDF
    A toy calculation of string/D-particle interactions within a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induces the appearance of a microscopic event horizon, or `bubble', inside which stable matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it to contract again, in a `bounce' solution. Within such `bubbles', massless matter propagates with an effective velocity that is less than the velocity of light in vacuo, which may lead to observable violations of Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior geometry of the bubbles select preferentially three for the number of the spatial dimensions, corresponding to a consistent formulation of the interaction of D3 branes with recoiling D particles, which are allowed to fluctuate independently only on the D3-brane hypersurface.Comment: 25 pages LaTeX, 4 eps figures include

    Thermal properties of spacetime foam

    Get PDF
    Spacetime foam can be modeled in terms of nonlocal effective interactions in a classical nonfluctuating background. Then, the density matrix for the low-energy fields evolves, in the weak-coupling approximation, according to a master equation that contains a diffusion term. Furthermore, it is argued that spacetime foam behaves as a quantum thermal field that, apart from inducing loss of coherence, gives rise to effects such as gravitational Lamb and Stark shifts as well as quantum damping in the evolution of the low-energy observables. These effects can be, at least in principle, experimentally tested.Comment: RevTeX 3.01, 11 pages, no figure

    Testing A (Stringy) Model of Quantum Gravity

    Get PDF
    I discuss a specific model of space-time foam, inspired by the modern non-perturbative approach to string theory (D-branes). The model views our world as a three brane, intersecting with D-particles that represent stringy quantum gravity effects, which can be real or virtual. In this picture, matter is represented generically by (closed or open) strings on the D3 brane propagating in such a background. Scattering of the (matter) strings off the D-particles causes recoil of the latter, which in turn results in a distortion of the surrounding space-time fluid and the formation of (microscopic, i.e. Planckian size) horizons around the defects. As a mean-field result, the dispersion relation of the various particle excitations is modified, leading to non-trivial optical properties of the space time, for instance a non-trivial refractive index for the case of photons or other massless probes. Such models make falsifiable predictions, that may be tested experimentally in the foreseeable future. I describe a few such tests, ranging from observations of light from distant gamma-ray-bursters and ultra high energy cosmic rays, to tests using gravity-wave interferometric devices and terrestrial particle physics experients involving, for instance, neutral kaons.Comment: 25 pages LATEX, four figures incorporated, uses special proceedings style. Invited talk at the third international conference on Dark Matter in Astro and Particle Physics, DARK2000, Heidelberg, Germany, July 10-15 200

    Physics in the Real Universe: Time and Spacetime

    Get PDF
    The Block Universe idea, representing spacetime as a fixed whole, suggests the flow of time is an illusion: the entire universe just is, with no special meaning attached to the present time. This view is however based on time-reversible microphysical laws and does not represent macro-physical behaviour and the development of emergent complex systems, including life, which do indeed exist in the real universe. When these are taken into account, the unchanging block universe view of spacetime is best replaced by an evolving block universe which extends as time evolves, with the potential of the future continually becoming the certainty of the past. However this time evolution is not related to any preferred surfaces in spacetime; rather it is associated with the evolution of proper time along families of world linesComment: 28 pages, including 9 Figures. Major revision in response to referee comment

    Stringy Space-Time Foam and High-Energy Cosmic Photons

    Full text link
    In this review, I discuss briefly stringent tests of Lorentz-violating quantum space-time foam models inspired from String/Brane theories, provided by studies of high energy Photons from intense celestial sources, such as Active Galactic Nuclei or Gamma Ray Bursts. The theoretical models predict modifications to the radiation dispersion relations, which are quadratically suppressed by the string mass scale, and time delays in the arrival times of photons (assumed to be emitted more or less simultaneously from the source), which are proportional to the photon energy, so that the more energetic photons arrive later. Although the astrophysics at the source of these energetic photons is still not understood, and such non simultaneous arrivals, that have been observed recently, might well be due to non simultaneous emission as a result of conventional physics effects, nevertheless, rather surprisingly, the observed time delays can also fit excellently the stringy space-time foam scenarios, provided the space-time defect foam is inhomogeneous. The key features of the model, that allow it to evade a plethora of astrophysical constraints on Lorentz violation, in sharp contrast to other field-theoretic Lorentz-violating models of quantum gravity, are: (i) transparency of the foam to electrons and in general charged matter, (ii) absence of birefringence effects and (iii) a breakdown of the local effective lagrangian formalism.Comment: 26 pages Latex, 4 figures, uses special macros. Keynote Lecture in the International Conference "Recent Developments in Gravity" (NEB14), Ioannina (Greece) June 8-11 201

    Square Root Actions, Metric Signature, and the Path-Integral of Quantum Gravity

    Get PDF
    We consider quantization of the Baierlein-Sharp-Wheeler form of the gravitational action, in which the lapse function is determined from the Hamiltonian constraint. This action has a square root form, analogous to the actions of the relativistic particle and Nambu string. We argue that path-integral quantization of the gravitational action should be based on a path integrand exp[iS]\exp[ \sqrt{i} S ] rather than the familiar Feynman expression exp[iS]\exp[ i S ], and that unitarity requires integration over manifolds of both Euclidean and Lorentzian signature. We discuss the relation of this path integral to our previous considerations regarding the problem of time, and extend our approach to include fermions.Comment: 32 pages, latex. The revision is a more general treatment of the regulator. Local constraints are now derived from a requirement of regulator independenc

    Loop Quantum Cosmology II: Volume Operators

    Full text link
    Volume operators measuring the total volume of space in a loop quantum theory of cosmological models are constructed. In the case of models with rotational symmetry an investigation of the Higgs constraint imposed on the reduced connection variables is necessary, a complete solution of which is given for isotropic models; in this case the volume spectrum can be calculated explicitly. It is observed that the stronger the symmetry conditions are the smaller is the volume spectrum, which can be interpreted as level splitting due to broken symmetries. Some implications for quantum cosmology are presented.Comment: 21 page
    corecore