15 research outputs found
A twist in chiral interaction between biological helices
Using an exact solution for the pair interaction potential, we show that
long, rigid, chiral molecules with helical surface charge patterns have a
preferential interaxial angle ~((RH)^1/2)/L, where L is the length of the
molecules, R is the closest distance between their axes, and H is the helical
pitch. Estimates based on this formula suggest a solution for the puzzle of
small interaxial angles in a-helix bundles and in cholesteric phases of DNA.Comment: 7 pages, 2 figures, PDF file onl
alpha,beta-Unsaturated Carbonyl System of Chalcone-Based Derivatives Is Responsible for Broad Inhibition of Proteasomal Activity and Preferential Killing of Human Papilloma Virus (HPV) Positive Cervical Cancer Cells
Proteasome inhibitors have potential for the treatment of cervical cancer. We describe the synthesis and biological characterization of a new series of 1,3-diphenylpropen-1-one (chalcone) based derivatives lacking the boronic acid moieties of the previously reported chalcone-based proteasome inhibitor 3,5-bis(4-boronic acid benzylidene)-1-methylpiperidin-4-one and bearing a variety of amino acid substitutions on the amino group of the 4-piperidone. Our lead compound 2 (RA-1) inhibits proteasomal activity and has improved dose-dependent antiproliferative and proapoptotic properties in cervical cancer cells containing human papillomavirus. Further, it induces synergistic killing of cervical cancer cell lines when tested in combination with an FDA approved proteasome inhibitor. Exploration of the potential mechanism of proteasomal inhibition by our lead compound using in silico docking studies suggests that the carbonyl group of its oxopiperidine moiety is susceptible to nucleophilic attack by the gamma-hydroxythreonine side chain within the catalytic sites of the proteasome
α,β-Unsaturated Carbonyl System of Chalcone-Based Derivatives Is Responsible for Broad Inhibition of Proteasomal Activity and Preferential Killing of Human Papilloma Virus (HPV) Positive Cervical Cancer Cells
α,β-Unsaturated Carbonyl System of Chalcone-Based Derivatives Is Responsible for Broad Inhibition of Proteasomal Activity and Preferential Killing of Human Papilloma Virus (HPV) Positive Cervical Cancer Cells
Proteasome inhibitors have potential for the treatment of cervical cancer. We describe the synthesis and biological characterization of a new series of 1,3-diphenylpropen-1-one (chalcone) based derivatives lacking the boronic acid moieties of the previously reported chalcone-based proteasome inhibitor 3,5-bis(4-boronic acid benzylidene)-1-methylpiperidin-4-one and bearing a variety of amino acid substitutions on the amino group of the 4-piperidone. Our lead compound 2 (RA-1) inhibits proteasomal activity and has improved dose-dependent antiproliferative and proapoptotic properties in cervical cancer cells containing human papillomavirus. Further, it induces synergistic killing of cervical cancer cell lines when tested in combination with an FDA approved proteasome inhibitor. Exploration of the potential mechanism of proteasomal inhibition by our lead compound using in silico docking studies suggests that the carbonyl group of its oxopiperidine moiety is susceptible to nucleophilic attack by the γ-hydroxythreonine side chain within the catalytic sites of the proteasome
