874 research outputs found

    A Topos Perspective on State-Vector Reduction

    Full text link
    A preliminary investigation is made of possible applications in quantum theory of the topos formed by the collection of all MM-sets, where MM is a monoid. Earlier results on topos aspects of quantum theory can be rederived in this way. However, the formalism also suggests a new way of constructing a `neo-realist' interpretation of quantum theory in which the truth values of propositions are determined by the actions of the monoid of strings of finite projection operators. By these means, a novel topos perspective is gained on the concept of state-vector reduction

    Topos theory and `neo-realist' quantum theory

    Full text link
    Topos theory, a branch of category theory, has been proposed as mathematical basis for the formulation of physical theories. In this article, we give a brief introduction to this approach, emphasising the logical aspects. Each topos serves as a `mathematical universe' with an internal logic, which is used to assign truth-values to all propositions about a physical system. We show in detail how this works for (algebraic) quantum theory.Comment: 22 pages, no figures; contribution for Proceedings of workshop "Recent Developments in Quantum Field Theory", MPI MIS Leipzig, July 200

    Entropy of Classical Histories

    Get PDF
    We consider a number of proposals for the entropy of sets of classical coarse-grained histories based on the procedures of Jaynes, and prove a series of inequalities relating these measures. We then examine these as a function of the coarse-graining for various classical systems, and show explicitly that the entropy is minimized by the finest-grained description of a set of histories. We propose an extension of the second law of thermodynamics to the entropy of histories. We briefly discuss the implications for decoherent or consistent history formulations of quantum mechanics.Comment: 35 pages RevTeX 3.0 + 5 figures (postscript). Minor corrections and typos. To appear in Physical Review

    Continuous Time and Consistent Histories

    Get PDF
    We discuss the use of histories labelled by a continuous time in the approach to consistent-histories quantum theory in which propositions about the history of the system are represented by projection operators on a Hilbert space. This extends earlier work by two of us \cite{IL95} where we showed how a continuous time parameter leads to a history algebra that is isomorphic to the canonical algebra of a quantum field theory. We describe how the appropriate representation of the history algebra may be chosen by requiring the existence of projection operators that represent propositions about time average of the energy. We also show that the history description of quantum mechanics contains an operator corresponding to velocity that is quite distinct from the momentum operator. Finally, the discussion is extended to give a preliminary account of quantum field theory in this approach to the consistent histories formalism.Comment: Typeset in RevTe

    Topos-Theoretic Extension of a Modal Interpretation of Quantum Mechanics

    Full text link
    This paper deals with topos-theoretic truth-value valuations of quantum propositions. Concretely, a mathematical framework of a specific type of modal approach is extended to the topos theory, and further, structures of the obtained truth-value valuations are investigated. What is taken up is the modal approach based on a determinate lattice \Dcal(e,R), which is a sublattice of the lattice \Lcal of all quantum propositions and is determined by a quantum state ee and a preferred determinate observable RR. Topos-theoretic extension is made in the functor category \Sets^{\CcalR} of which base category \CcalR is determined by RR. Each true atom, which determines truth values, true or false, of all propositions in \Dcal(e,R), generates also a multi-valued valuation function of which domain and range are \Lcal and a Heyting algebra given by the subobject classifier in \Sets^{\CcalR}, respectively. All true propositions in \Dcal(e,R) are assigned the top element of the Heyting algebra by the valuation function. False propositions including the null proposition are, however, assigned values larger than the bottom element. This defect can be removed by use of a subobject semi-classifier. Furthermore, in order to treat all possible determinate observables in a unified framework, another valuations are constructed in the functor category \Sets^{\Ccal}. Here, the base category \Ccal includes all \CcalR's as subcategories. Although \Sets^{\Ccal} has a structure apparently different from \Sets^{\CcalR}, a subobject semi-classifier of \Sets^{\Ccal} gives valuations completely equivalent to those in \Sets^{\CcalR}'s.Comment: LaTeX2

    Bimetric Gravity Theory, Varying Speed of Light and the Dimming of Supernovae

    Get PDF
    In the bimetric scalar-tensor gravitational theory there are two frames associated with the two metrics {\hat g}_{\mu\nu} and g_{\mu\nu}, which are linked by the gradients of a scalar field \phi. The choice of a comoving frame for the metric {\hat g}_{\mu\nu} or g_{\mu\nu} has fundamental consequences for local observers in either metric spacetimes, while maintaining diffeomorphism invariance. When the metric g_{\mu\nu} is chosen to be associated with comoving coordinates, then the speed of light varies in the frame with the metric {\hat g}_{\mu\nu}. Observers in this frame see the dimming of supernovae because of the increase of the luminosity distance versus red shift, due to an increasing speed of light in the early universe. Moreover, in this frame the scalar field \phi describes a dark energy component in the Friedmann equation for the cosmic scale without acceleration. If we choose {\hat g}_{\mu\nu} to be associated with comoving coordinates, then an observer in the g_{\mu\nu} metric frame will observe the universe to be accelerating and the supernovae will appear to be farther away. The theory predicts that the gravitational constant G can vary in spacetime, while the fine-structure constant \alpha=e^2/\hbar c does not vary. The problem of cosmological horizons as viewed in the two frames is discussed.Comment: 22 pages, Latex file. No figures. Corrected typos. Added reference. Further references added. Further corrections. To be published in Int. J. Mod. Phys. D, 200

    Persistence of Tripartite Nonlocality for Non-inertial Observers

    Full text link
    We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the Bell/CHSH inequalities cannot be violated for sufficiently large but finite acceleration. However the Svetlichny inequality, which is a measure of genuine tripartite non-locality, can be violated for any finite value of the acceleration.Comment: 4 pages, pdflatex, 2 figure

    Space-time modeling of soil moisture: Stochastic rainfall forcing with heterogeneous vegetation

    Get PDF
    The present paper complements that of Isham et al. (2005), who introduced a space-time soil moisture model driven by stochastic space-time rainfall forcing with homogeneous vegetation and in the absence of topographical landscape effects. However, the spatial variability of vegetation may significantly modify the soil moisture dynamics with important implications for hydrological modeling. In the present paper, vegetation heterogeneity is incorporated through a two dimensional Poisson process representing the coexistence of two functionally different types of plants (e.g., trees and grasses). The space-time statistical structure of relative soil moisture is characterized through its covariance function which depends on soil, vegetation, and rainfall patterns. The statistical properties of the soil moisture process averaged in space and time are also investigated. These properties are especially important for any modeling that aggregates soil moisture characteristics over a range of spatial and temporal scales. It is found that particularly at small scales, vegetation heterogeneity has a significant impact on the averaged process as compared with the uniform vegetation case. Also, averaging in space considerably smoothes the soil moisture process, but in contrast, averaging in time up to 1 week leads to little change in the variance of the averaged process

    Topos Theory and Consistent Histories: The Internal Logic of the Set of all Consistent Sets

    Get PDF
    A major problem in the consistent-histories approach to quantum theory is contending with the potentially large number of consistent sets of history propositions. One possibility is to find a scheme in which a unique set is selected in some way. However, in this paper we consider the alternative approach in which all consistent sets are kept, leading to a type of `many world-views' picture of the quantum theory. It is shown that a natural way of handling this situation is to employ the theory of varying sets (presheafs) on the space \B of all Boolean subalgebras of the orthoalgebra \UP of history propositions. This approach automatically includes the feature whereby probabilistic predictions are meaningful only in the context of a consistent set of history propositions. More strikingly, it leads to a picture in which the `truth values', or `semantic values' of such contextual predictions are not just two-valued (\ie true and false) but instead lie in a larger logical algebra---a Heyting algebra---whose structure is determined by the space \B of Boolean subalgebras of \UP.Comment: 28 pages, LaTe
    • …
    corecore