332 research outputs found

    Complexity Measures from Interaction Structures

    Full text link
    We evaluate new complexity measures on the symbolic dynamics of coupled tent maps and cellular automata. These measures quantify complexity in terms of kk-th order statistical dependencies that cannot be reduced to interactions between k1k-1 units. We demonstrate that these measures are able to identify complex dynamical regimes.Comment: 11 pages, figures improved, minor changes to the tex

    Security of Quantum Key Distribution with entangled quNits

    Full text link
    We consider a generalisation of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by quNNits (i.e., N-dimensional systems). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize Cerf's formalism for cloning machines and establish the form of the most general cloning machine that respects all the symmetries of the problem. We obtain an upper bound on the error rate that guarantees the confidentiality of quNit generalisations of the Ekert's protocol for qubits.Comment: 15 pages, equation 15 and conclusions corrected the 14th of April 2003, new results adde

    Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics

    Full text link
    A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which entropies and power-law distributions follow: these distributions could be relevant in many anomalous systems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, expansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and some one parameter generalized entropies already known belong to this class. These entropies and their distribution functions are compared, and the corresponding deformed algebras are discussed.Comment: Version to appear in PRE: about 20% shorter, references updated, 13 PRE pages, 3 figure

    Controlling orbital moment and spin orientation in CoO layers by strain

    Get PDF
    We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L2,3_{2,3} edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the strain in the films induced by the substrate. We presented a quantitative model to explain how strain together with the spin-orbit interaction determine the 3d orbital occupation, the magnetic anisotropy, as well as the spin and orbital contributions to the magnetic moments. Control over the sign and direction of the strain may therefore open new opportunities for applications in the field of exchange bias in multilayered magnetic films

    A Bivariate Measure of Redundant Information

    Get PDF
    We define a measure of redundant information based on projections in the space of probability distributions. Redundant information between random variables is information that is shared between those variables. But in contrast to mutual information, redundant information denotes information that is shared about the outcome of a third variable. Formalizing this concept, and being able to measure it, is required for the non-negative decomposition of mutual information into redundant and synergistic information. Previous attempts to formalize redundant or synergistic information struggle to capture some desired properties. We introduce a new formalism for redundant information and prove that it satisfies all the properties necessary outlined in earlier work, as well as an additional criterion that we propose to be necessary to capture redundancy. We also demonstrate the behaviour of this new measure for several examples, compare it to previous measures and apply it to the decomposition of transfer entropy.Comment: 16 pages, 15 figures, 1 table, added citation to Griffith et al 2012, Maurer et al 199

    Universal Quantum Information Compression

    Full text link
    Suppose that a quantum source is known to have von Neumann entropy less than or equal to S but is otherwise completely unspecified. We describe a method of universal quantum data compression which will faithfully compress the quantum information of any such source to S qubits per signal (in the limit of large block lengths).Comment: RevTex 4 page

    Experimental implementation of time-coding quantum key distribution

    Full text link
    We have implemented an experimental set-up in order to demonstrate the feasibility of time-coding protocols for quantum key distribution. Alice produces coherent 20 ns faint pulses of light at 853 nm. They are sent to Bob with delay 0 ns (encoding bit 0) or 10 ns (encoding bit 1). Bob directs at random the received pulses to two different arms. In the first one, a 300 ps resolution Si photon-counter allows Bob to precisely measure the detection times of each photon in order to establish the key. Comparing them with the emission times of the pulses sent by Alice allows to evaluate the quantum bit error rate (QBER). The minimum obtained QBER is 1.62 %. The possible loss of coherence in the set-up can be exploited by Eve to eavesdrop the line. Therefore, the second arm of Bob set-up is a Mach-Zender interferometer with a 10 ns propagation delay between the two path. Contrast measurement of the output beams allows to measure the autocorrelation function of the received pulses that characterizes their average coherence. In the case of an ideal set-up, the value expected with the pulses sent by Alice is 0.576. The experimental value of the pulses autocorrelation function is found to be 0.541. Knowing the resulting loss of coherence and the measured QBER, one can evaluate the mutual information between Alice and Eve and the mutual information between Alice and Bob, in the case of intercept-resend attacks and in the case of attacks with intrication. With our values, Bob has an advantage on Eve of 0.43 bit per pulse. The maximum possible QBER corresponding to equal informations for Bob and Eve is 5.8 %. With the usual attenuation of fibres at 850 nm, it shows that secure key distribution is possible up to a distance of 2.75 km, which is sufficient for local links.Comment: 27 pages, 6 figure

    HyspIRI High-Temperature Saturation Study

    Get PDF
    As part of the precursor activities for the HyspIRI mission, a small team was assembled to determine the optimum saturation level for the mid-infrared (4-?m) channel, which is dedicated to the measurement of hot targets. Examples of hot targets include wildland fires and active lava flows. This determination took into account both the temperature expected for the natural phenomena and the expected performance of the mid-infrared channel as well as its overlap with the other channels in the thermal infrared (7.5-12 ?m) designed to measure the temperature of lower temperature targets. Based on this work, the hot target saturation group recommends a saturation temperature of 1200 K for the mid-infrared channel. The saturation temperature of 1200 K represents a good compromise between the prevention of saturation and sensitivity to ambient temperature

    Strengthened Lindblad inequality: applications in non equilibrium thermodynamics and quantum information theory

    Full text link
    A strengthened Lindblad inequality has been proved. We have applied this result for proving a generalized HH-theorem in non equilibrium thermodynamics. Information processing also can be considered as some thermodynamic process. From this point of view we have proved a strengthened data processing inequality in quantum information theory.Comment: 7 pages, revte
    corecore