636 research outputs found

    Component-Based Real-Time Operating System for Embedded Applications

    Get PDF
    Acceptance rate: 37%, Rank (CORE): AInternational audienceAs embedded systems must constantly integrate new functionalities, their developement cycles must be based on high-level abstractions, making the software design more flexible. CBSE provides an approach to these new requirements. However, low-level services provided by operating systems are an integral part of embedded applications, furthermore deployed on resource-limited devices. Therefore, the expected benefits of CBSE must not impact on the constraints imposed by the targetted domain, such as memory footprint, energy consumption, and execution time. In this paper, we present the componentization of a legacy industry-established Real-Time Operating System, and how component-based applications are built on top of it. We use the Think framework that allows to produce flexible systems while paying for flexibility only where desired. Performed experimentions show that the induced overhead is negligeable

    Stage I-II nodular lymphocyte-predominant Hodgkin lymphoma: a multi-institutional study of adult patients by ILROG

    Get PDF
    Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is an uncommon histologic variant, and the optimal treatment of stage I-II NLPHL is undefined. We conducted a multicenter retrospective study including patients ≥16 years of age with stage I-II NLPHL diagnosed from 1995 through 2018 who underwent all forms of management, including radiotherapy (RT), combined modality therapy (CMT; RT+chemotherapy [CT]), CT, observation after excision, rituximab and RT, and single-agent rituximab. End points were progression-free survival (PFS), freedom from transformation, and overall survival (OS) without statistical comparison between management groups. We identified 559 patients with median age of 39 years: 72.3% were men, and 54.9% had stage I disease. Median follow-up was 5.5 years (interquartile range, 3.1-10.1). Five-year PFS and OS in the entire cohort were 87.1% and 98.3%, respectively. Primary management was RT alone (n = 257; 46.0%), CMT (n = 184; 32.9%), CT alone (n = 47; 8.4%), observation (n = 37; 6.6%), rituximab and RT (n = 19; 3.4%), and rituximab alone (n = 15; 2.7%). The 5-year PFS rates were 91.1% after RT, 90.5% after CMT, 77.8% after CT, 73.5% after observation, 80.8% after rituximab and RT, and 38.5% after rituximab alone. In the RT cohort, but not the CMT cohort, variant immunoarchitectural pattern and number of sites >2 were associated with worse PFS (P 2 (P = .0006). OS for patients with stage I-II NLPHL was excellent after all treatments

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Selective laser melting–enabled electrospinning: Introducing complexity within electrospun membranes

    Get PDF
    Additive manufacturing technologies enable the creation of very precise and well-defined structures that can mimic hierarchical features of natural tissues. In this article, we describe the development of a manufacturing technology platform to produce innovative biodegradable membranes that are enhanced with controlled microenvironments produced via a combination of selective laser melting techniques and conventional electrospinning. This work underpins the manufacture of a new generation of biomaterial devices that have significant potential for use as both basic research tools and components of therapeutic implants. The membranes were successfully manufactured and a total of three microenvironment designs (niches) were chosen for thorough characterisation. Scanning electron microscopy analysis demonstrated differences in fibre diameters within different areas of the niche structures as well as differences in fibre density. We also showed the potential of using the microfabricated membranes for supporting mesenchymal stromal cell culture and proliferation. We demonstrated that mesenchymal stromal cells grow and populate the membranes penetrating within the niche-like structures. These findings demonstrate the creation of a very versatile tool that can be used in a variety of tissue regeneration applications including bone healing
    corecore