
RESEARCH Open Access

A framework for service provisioning in virtual
sensor networks
Lambros Sarakis1*, Theodore Zahariadis1, Helen-Catherine Leligou1 and Mischa Dohler2

Abstract

The majority of research and development efforts in the area of Wireless Sensor Networks (WSNs) focus on WSN
systems that are dedicated for a specific application. However, this trend is currently being replaced by resource-
rich WSN deployments that are expected to provide capabilities in excess of any application’s requirements. In this
regard, the concept of virtual sensor networking is an emerging approach that enables the decoupling of the
physical sensor deployment from the applications running on top of it, allowing in this way the dynamic
collaboration of a subset of sensor nodes and helping the proliferation of new services and applications beyond
the scope of the original deployment. In this context, the article presents the architecture of a system for the
realization of Virtual Sensor Networks (VSNs). The aim of the proposed architecture is to enable the realization of
scalable, flexible, adaptive, energy-efficient, and trust-aware VSN platforms, focusing on the reduction of
deployment complexity and management cost, and on advanced interoperability mechanisms. The efforts have
been put towards specifying a service provisioning architecture and mechanisms for advanced sensor and
middleware design.

Keywords: wireless sensor network, virtualization, system architecture

1. Introduction
Over the last few years, we are witnessing an explosion
of interest in research on Wireless Sensor Networks
(WSNs) that are accompanied by a constantly increasing
interest for physical WSN deployment and commercial
exploitation of the services provided by these networks.
In this regard, the majority of relevant research and
development efforts have focused on WSN systems that
are dedicated for a specific application. However, a
trend is currently developing towards resource-rich
WSN deployments that are expected to provide capabil-
ities in excess of any application’s requirements.
In that sense, sensor-based applications/services will

utilize sensors for purposes beyond the scope of the ori-
ginal sensor design and deployment, creating in this way
an instantiation of a Virtual Sensor Network (VSN) [1,2]
to serve user-specific requests. Virtualization is the key
enabler for decoupling the physical sensor deployment
from the applications running on top, and is thus a

significant step towards the decoupling of ownerships in
the Internet of Things. In rough analogy to virtualiza-
tion in more “traditional” network infrastructures (both
at the core and access network levels) [3], WSN virtuali-
zation aims to accommodate multiple logical network
instances over a single physical network infrastructure
with the ultimate goal of (a) supporting applications
with different requirements both in terms of nodes and
communication functionalities and (b) utilizing in an
efficient and cost-effective manner the available network
resources.
With these goals in mind, one could think of several

applications that can benefit from the virtualization of
sensor network infrastructures. In the following, we dis-
cuss two types of applications that correspond to what
we consider to be the most significant use cases for
VSNs. The first type involves geographically overlapped
applications [1]. In this case, a WSN that is deployed to
support an application can utilize communication
resources offered by another WSN operating in the
same area and being deployed to support a different
application. The main benefit from the collaboration of
the different WSNs, in this case, is the reduction of the

* Correspondence: sarakis@teihal.gr
1Technological Educational Institute of Chalkida, 34400 Psachna, Euboea,
Greece
Full list of author information is available at the end of the article

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

© 2012 Sarakis et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207518674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sarakis@teihal.gr
http://creativecommons.org/licenses/by/2.0

number of sensors of each type without losing accuracy
or degrading the required user functionality. With the
smart usage of previously deployed networks, this
approach contributes to cost savings and helps future
evolvement and addition of new types of sensors with-
out the need to deploy a full network from scratch.
The second VSN use case involves applications oper-

ating over multi-purpose sensor networks. A common
use of VSNs, in this case, could be the separation of
nodes with multiple sensing elements in different (vir-
tual) networks, each one being responsible to track a
different sensing parameter. Using this approach, a bet-
ter administration at node level and enhanced usability
can be achieved with an increased number of different
end-users gaining access and control in sensors’ infor-
mation according to their needs.
Whilst mechanisms are in place to facilitate virtualiza-

tion in the core network [3], major challenges remain in
networks that connect embedded sensor devices to the
Internet. On the one hand, these have to do with indivi-
dual functionalities of a VSN system related, for exam-
ple, to middleware, routing, security, trust, and energy
awareness of protocols and mechanisms at various layers
of the communication protocol stack. On the other
hand, significant challenges arise as far as the develop-
ment of a holistic approach to VSN is concerned, which
should take into account not only individual enhance-
ments related to the aforementioned functions, but also
the need to federate resources across networks belong-
ing to different administrative domains, as well as the
need to support promising business models.
The challenges just presented are currently addressed

by the VITRO project [4], the main objective of which
is to achieve the realization of a scalable, flexible, adap-
tive, energy-efficient, and trust-aware VSN platform,
focusing on the reduction of deployment complexity
and management cost, and on advanced interoperability.
The VSN architecture that is proposed by VITRO is
presented in this article.
The motivation behind the proposed architecture

stems from the current trend to overcome the con-
straints of application-specific WSNs and provide a fed-
erated system that is more efficient, flexible, and
adaptive in a wide sense. In this context, the goal of the
system presented in this article is to support a number
of advanced applications/services provided by VSNs.
Each of these applications will have their own resource
and service requirements, which must be fulfilled in
order to ensure specific service level agreement require-
ments. The abstraction introduced by the resource/ser-
vice virtualization mechanisms will allow network
operators to manage, modify, and utilize WSNs in a
highly flexible and dynamic way. The flexibility gained
through such an approach can be used to increase

sustainability (in terms of cost-effectiveness) of deployed
network/node resources.
Given the heterogeneity of the deployed WSNs (in

terms of platforms, operating systems–OSs, program-
ming paradigms, addressing schemes, etc.), it is a tre-
mendous challenge to make effective and seamless usage
of such resources and services in an integrated VSN ser-
vice platform. In this context, this study aims at describ-
ing an integrated system architecture that extends the
notion of a WSN towards the realization of large-scale,
cross-organizational VSNs. What is introduced is a new
paradigm in the design, deployment, and usage of
WSNs, one in which the sensor network is not designed
and deployed for one specific application, but for a vari-
ety of applications. In this way, WSNs can in principle
support many applications and, at the same time, a new
application can count on a wide base of sensor networks
already deployed.
The remainder of the article is organized as follows.

Section 2 presents the related study on sensor networks
virtualization, while Section 3 introduces the proposed
VSN system architecture and discusses the principles
behind its design. The architecture of the VSN gateway
and the architecture of the sensor node are described in
Section 4. The interfaces between the system compo-
nents are presented in Section 5, while example interac-
tions for service registration and negotiation, and
session establishment are illustrated in Section 6. Finally,
Section 7 concludes the article and presents future
directions.

2. Related study
Virtualization gains increasingly more attention in com-
puting and networking targeting more efficient resource
utilization, lower cost, increased flexibility and manage-
ability, and improved administration and interoperability
among different computing devices. Aspects of virtuali-
zation have been introduced in WSNs with the aim to
give solutions to the constraints mentioned above and
lead to a wider use of these networks and a faster reali-
zation of the Internet of Things. Research efforts in sen-
sor networks virtualization include (a) OS virtualization,
(b) sensor virtualization, (c) network virtualization, (d)
virtual machines, and (e) middleware layers, with the
last being the predominant area of interest.
Running multiple OSs at node level is at least ineffi-

cient due to constraints in sensor hardware. Moreover,
running one or more applications that are not supported
by the host OS, which is the most reasonable use of full
platform virtualization, is a much more infrequent case
in sensor nodes than traditional PCs. Up to date most
OSs are built under the event-driven framework (e.g.,
TinyOS [5], Contiki [6]). A traditional thread-based
approach is supported by the kernel of the MANTIS OS

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 2 of 19

[7]. Platform virtualization with a node running distinct
host and guest OS threads has been demonstrated by
the TinyMOS implementation which can run a typical
TinyOS program as a MANTIS thread [8].
Sensor virtualization is supported by inserting an

abstraction layer between the application logic and the
sensor driver with the aim to address issues like incom-
plete a priori knowledge of the area of operation, recali-
bration of sensing equipment, changing conditions, etc.
A component targeting sensor virtualization, which is
programmable at runtime and is able to execute differ-
ent adaptation schemes that may change during the
application lifetime, is presented in [9]. Another area of
research on virtual sensors is related to inference when
physical sensors of the WSN do not work anymore. In
this context, the study of [10] presents a method where
virtual sensors infer approximation values using fuzzy
logic rules with the assumption that physical quantities
sensed by neighbor sensors are related.
Network virtualization in WSNs focuses on algorithms

and protocol support for the formation, usage, adapta-
tion, and maintenance of (possibly dynamically varying)
subset of sensors collaborating on specific tasks and
being organized as a VSN using resources of a shared
physical infrastructure [1]. These nodes rely on those
outside the subset to achieve connectivity and overcome
the deployment and resource constraints. To make
VSNs a reality, a number of mechanisms for VSN main-
tenance (e.g., adding/deleting nodes, entering/leaving a
VSN, and merging/splitting of VSNs) and membership
maintenance (e.g., dynamic (re)assignment of sensor
roles) must be developed. A mechanism for self-organi-
zation of VSN members relying on a cluster tree-based
scheme is presented in [11].
Virtual machines are widely used in high-end servers

and PCs for various purposes such as platform indepen-
dence and isolation. In sensor networks, however, the
focus is on re-programmability, i.e., the capability of
injecting new code into each node on site dynamically.
Examples of stack-oriented virtual machines include
Maté [12] and ASVM [13]. Their goal is to provide an
application-specific virtual machine that delivers the
needed flexibility to support a safe and efficient pro-
gramming environment. By providing a limited number
of instructions necessary for a specific application,
Maté/ASVM can reduce the size of the assembly code
to be transmitted to each node. Melete [14] extends
Maté and supports multiple concurrent applications.
VMStar [15] is another framework for building applica-
tion-specific virtual machines and allows the dynamic
update of the system software, such as the virtual
machine itself, as well as the application code.
In the last few years, many varying middleware solu-

tions for WSNs have been presented and their

architectures have been influenced by the progressive
shift of application paradigms from targeting single sen-
sor networks towards implementing the Internet of
Things, where applications will operate over multiple
interconnected networks on a global scale. Each middle-
ware solution makes its own architectural design
assumptions that are largely based on the application
domain(s) it aims to support. Thus, each solution pro-
vides different degree of support for features of virtuali-
zation such as resource and service discovery,
collaboration of heterogeneous nodes, interconnection
of sensor sub-networks, and connectivity to external
networks, ease of deployment and maintenance, concur-
rent execution of multiple applications, scalability,
adaptability, and reliability. Most of the current solu-
tions try to facilitate high-level querying of sensor data,
help to mask the distribution and heterogeneity in the
sensor network, and address resource constraints by
providing, for example, energy-aware routing and query
processing.
In terms of their models for querying and data aggre-

gation, their assumptions about the topology and other
characteristics of the network, as well as the degree of
support for the aforementioned aspects of VSNs, the
proposed middleware frameworks can fit into one or
more of the following categories:

• Database-inspired approaches, where the middle-
ware configures the sensor network to behave as a
database management system accepting and proces-
sing database queries from the application layer.
Examples of this type of middleware include Cougar
[16], TinyDB [17], and Global Sensor Networks [18].
• Middleware making use of a distributed virtual
shared space. Many approaches in this class are
based on the tuple space shared memory model,
which was notably used in Linda [19], or simply pro-
vide a shared repository to enable global coordina-
tion and execution of group algorithms. Solutions
belonging to this category include TinyLIME [20]
and FACTS [21].
• Event-based approaches, which rely on publish/
subscribe mechanisms for sensor data delivery (e.g.,
Mires [22], PSWare [23]). In this case, the middle-
ware architecture allows sensor nodes to advertise
the types of sensor data they can provide, client
applications to select from the advertised services,
and sensor nodes to publish their data to clients in
accordance with their subscriptions.
• Middleware targeting adaptability and reliability. In
this category, the middleware approaches are
designed with special consideration for the issues of
adaptability to dynamic environments and self-orga-
nization, while some employ fault-tolerance

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 3 of 19

mechanisms. Example solutions of this type of mid-
dleware include Impala [24], RUNES [25], and
DARMA [26].
• Middleware with special support for heterogeneity
and scalability. The formation of VSNs and the col-
laboration of their heterogeneous smart nodes
require middleware frameworks able to efficiently
manage the underlying differentiation in terms of
software and hardware resources and subsequently
hide it from the applications. Scalability is also
required as VSNs can be formed across multiple and
heterogeneous WSNs possibly belonging to different
administrative domains. Regarding single sensor net-
works, some representative approaches in this cate-
gory are TinyDB, Cougar, and Agilla [27]. Multiple
sensor network management is a concept supported
by jWebdust [28], Hourglass [29], and Global Sensor
Networks. This concept proposes the notion of a
VSN comprised of a number of discrete sensor net-
works that can be managed as a single entity.
Another project that enables the interconnection of
multiple sensor networks is Sensor Web Enablement
[30].
• Middleware with explicit support for mobile nodes.
These nodes could have the role of a mobile sensor,
of a “data mule” node enabling or assisting commu-
nication across disconnected parts of the network or
of a mobile sink node. TinyLIME is specifically
designed to support mobile gateways and Impala is
also designed to function in high mobility scenarios.
• Middleware supporting connection to larger net-
works. Solutions in this category support the inter-
connection of WSN “islands” that export their
resources and services to external networks (e.g.,
TCP/IP) in order to be shared and exploited by
monitoring and controlling entities. The Sensor Web
Enablement framework provides such interface to
the Internet. A common characteristic in this class
of middleware is that it operates on (peer-to-peer)
network overlays formed over the participating sen-
sor networks, where each network is represented by
an application-level gateway node (e.g., ShareSense
[31], Hourglass, Global Sensor Networks).

Frameworks that support the interconnection of mul-
tiple sensor networks and provide interfaces between
such localized networks and external ones (e.g., the
Internet) specify models and services that can be used
for service provisioning in WSNs. A notable contribu-
tion in this area comes from the SWE [32], which has
specified standard models for (a) describing sensor sys-
tems and processes associated with sensor observations
(Sensor Model Language), and (b) encoding sensor
observations and measurements (Observations &

Measurements). The project has, in addition, specified
standard web service interfaces for collecting observa-
tions and system information (Sensor Observations Ser-
vice), requesting the execution of observations and
sensor data acquisitions (Sensor Planning Service–SPS),
publishing and subscribing to alerts produced by sensors
(Sensor Alert Service–SAS), and delivering in an asyn-
chronous manner messages and alerts from SAS and
SPS (Web Notification Services). A service-oriented sen-
sor Web architecture leveraging the SWE technologies
is presented in [33].
Taking a more telecom operator-oriented approach

to service provisioning in Machine-to-Machine (M2M)
networks (which can be regarded as a generalization/
superset of sensor networks), ETSI recently completed
the specification of the functional architecture for
M2M communications [34]. This architecture relies on
a service capability layer located at the network and
gateway (or device) domains, which is responsible for
functions like application enablement, secure transport
session establishment, network communication selec-
tion, network reachability and addressing, remote
entity management, secure service bootstrap, etc. In
contrast to SWE, the ETSI M2M architecture builds
on the use of resources for the exchange of informa-
tion between system components. The structure of the
resources as well as API primitives has been specified
and the information exchange follows a RESTful
approach. In compliance with this approach, the com-
munication between the gateway and the resource-con-
strained devices takes place through the COAP
protocol [35], which is currently under standardization
in IETF.
The SWE and ETSI M2M service frameworks inher-

ently support developments that are based on different
software architectural styles, namely service-oriented
and resource-oriented, respectively. By combining indivi-
dual strengths of the two approaches (i.e., extensibility
of service-oriented approach and simplicity of resource-
oriented approach), hybrid implementations are possible.
The architecture presented in this article will utilize a
combination of the two approaches (being more service-
oriented at the core part of the provisioning framework
and resource-oriented at the WSN part) in an attempt
to fully exploit the potential of virtualization to decouple
applications from the underlying hardware. A similar
approach has also been used in [36]. However, com-
pared to previous studies, the proposed framework takes
a more integrated approach to virtualization by combin-
ing virtualization enablers at several layers of the sensor
protocol stack (middleware, network, and MAC). To the
best of the authors’ knowledge, this is the first study
that presents such a holistic approach to virtual sensor
networking.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 4 of 19

3. System design principles and architecture
3.1. Design principles
A design choice for the presented VSN system is the
selection of the Internet as the physical bearer between
sensor platforms and the applications. The motivation
for this choice is that VSN-compliant sensor networks
can be considered as a huge network, whose core is the
Internet, where VSN-compliant client applications run.
At the periphery of this global network, there are the
single WSNs used by those applications. In this new
context, where sensors are deployed by some organiza-
tions and then used by other organizations and where
virtualization may imply virtualization of services but
may also have a more physical implication like virtuali-
zation of node resources, two are the main drivers for
the architectural design:

• Advanced sensor design which is able to support
advanced features in several fields (energy saving,
routing capability, middleware support, etc.).
• Middleware design to mediate between applica-
tions and sensors. Considering that a sensor does no
longer know the application that will use it, and an
application does no longer know the sensors that it
will use, major issues that the system architecture
must address are (a) how a new application finds the
sensors that it needs, (b) how it negotiates for the
right to use those sensors with the organizations
who deployed and administer them, and (c) how an
application reacts to changes in the network. In
other terms, the mechanisms for matching between
the applications (user) and the resources (used) have
to be specified.

The proposed system has tackled both these issues, by
defining a new reference architecture for the sensors
and an architecture for the middleware that binds
together the sensors and the applications. On the other
hand, with the aim of not leaving out the numerous cur-
rent WSN deployments, we have considered a third dri-
ver in the architecture design by including proprietary
and legacy, non-VSN-compliant sensor networks. The
VSN design, wherever possible, has avoided imposing
specific characteristics or features to be mandatory
implemented within the sensor node, and has instead
allowed those to be implemented somewhere else on
the Internet, provided that the accordance with a speci-
fic interface is ensured. The motivation for this choice is
to facilitate early adoption of VSN services among exist-
ing WSNs that, with very limited investment, may
implement adaptation servers for their WSNs, and open
them to being used by VSN applications, favoring quick
bootstrapping of the global VSN market.

3.2. General architecture
Prior to detailing the architecture of the VSN system,
terms used extensively throughout the article are intro-
duced:

• Virtual Sensor Network (VSN): A VSN is the seam-
less grouping of WSNs also called Wireless Sensor
Islands.
• Wireless Sensor Island (WSI): A WSI is any group-
ing of one or more legacy, proprietary, or VSN-
aware sensor networks which are able to communi-
cate, respectively, via a legacy, proprietary, or VSN-
aware gateway node. A WSI is an autonomous
administrative domain offering at least one service
(autonomous sensors, which are uniquely addressa-
ble from outside a WSI can be considered as a sim-
plified WSI).
• VSN service: Defined as any combination of one or
more operational and/or supporting services. As
operational service, we define any sensing capability
offered individually by a sensor node or collectively
by a WSI. As supporting services, we define func-
tions that support the provisioning of the opera-
tional services. The supporting services may be
offered by one or more WSIs or it may be hosted
outside the WSI by external service providers. Many
VSN services may be combined to offer new VSN
services (as service mash-ups).
• Resource: A resource is defined as any physical or
logical entity of a sensor node or of a WSI, which
can be allocated, utilized, and released in order to
realize a service. As such, resources may be consid-
ered as service enablers.

The overview of the general architecture is illustrated
in Figure 1. With respect to this architecture, the VSN
business model we envisage foresees an open market
environment, which enables open competition and flex-
ible service provisioning. In this model, three main
actors can be identified: WSI Enablers, VSN Service pro-
viders, and Users. The WSI Enablers are responsible for
offering services collectively provided by WSIs under
their administration. (For the sake of discussion, in this
business model it is assumed that the WSI Enabler plays
the dual role of being both WSI network operator and
service provider.) A WSI Enabler may own, lease, man-
age, and/or administrate more than one WSI and offers
at least one operational or supporting service. Based on
the discovered capabilities and services provided by the
underlying WSIs, it may additionally compose new ser-
vices and provide for them structured service descrip-
tions. The services may be offered to the VSN Service
provider either free of charge or under specific

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 5 of 19

contracts. In the latter case, guaranteed contracts and/or
service level agreements may also be offered.
The VSN Service providers (VSPs) are the actors

offering the VSN services to the Users. The main opera-
tions of a VSP are to publish, negotiate, provision, and
monitor the execution of services. A VSP may be a WSI
Enabler itself, utilize open-access WSIs, or may have
established permanent or negotiate on-demand service
contracts with one or more WSI Enablers. The VSP
may provide to the user the services of the WSI
Enablers (acting in this case like a service reseller) but
may also provide enhanced (or even customized) ser-
vices composed from service parts provided by different
WSI Enablers. In either case, semantically rich descrip-
tions of the services can be used to facilitate service
classification and searching. Depending on the business
model, open access, restricted, or premium application
services may be offered to different types of users.
The Users are the actors that negotiate and exploit the

VSN services, potentially under a Service Level Agree-
ment with the VSP. A user may have a permanent or
on-demand service contract with one or more VSPs.
It is noted that the VSN business model is not con-

strained to that depicted in Figure 1. In fact, the busi-
ness model can support a fully cascading architecture
(Figure 2), where a VSN application may utilize a hierar-
chy of n tiers of VSN Service Providers along with
external third-party Service Providers. Various VSN ser-
vice providers may also establish permanent contracts,
or negotiate them on demand, with WSI Enablers, or

other VSN service providers (in a collaborative fashion)
or even with third-party service providers.

3.3. Service provisioning
The proposed architecture for service provisioning is
shown in Figure 3. Each VSN Service Provider offers a
number of applications through a VSN Core framework
that consists of one Dynamic Virtual Network Server
(DVNS), a number of instanced VSN Managers and
may also host some Legacy Gateway Interworking Func-
tions (LGW IF). In brief, the DVNS is responsible for
discovering/registering and publishing VSN services to
the end users and initiate service provisioning. The VSN
Manager is responsible for service negotiation, session
establishment, and monitoring, while the LGW IF
enables the interaction with legacy WSIs.
The core part of the DVNS is the Services Registry.

This is a database where all the known/registered WSI
Enablers and the VSN services, which are known to this
VSN service provider, are listed and described. In addi-
tion to the service name, ID, and description, the Ser-
vice Registry has knowledge of the WSI Enabler(s) that
offer the services, their gateways, etc., and in particular
knows which Gateway(s) is/are responsible for each ser-
vice. The VSN services may be composed from several
“more elementary” services (hereafter called “abstract
services”) according, for example, to some pre-defined
composition rule. Abstract services are described
through a number of inputs, outputs, and parameters.
An example of such a service is one that passively

Proprietary
WSI Enablers

VSN
application

Client #1

VSN
application

Client #2

VSN
application

Client #3

VSN
Service
Providers

VSN-Aware
WSI Enablers

Legacy
WSI Enablers

Figure 1 Overall architecture of the proposed VSN system.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 6 of 19

collects measurements of sensing capabilities in a selec-
tion of areas. For this service, the parameters may corre-
spond to the set of desired sensing capabilities and areas
of interest, the type of the data aggregation function

(minimum, maximum, average, etc), the QoS require-
ments (e.g., tolerated time for a response, accepted per-
centage of estimated error), the type of reporting
pattern (periodic or one-shot) and associated

VSN
application

VSN Service
Provider
(Tier 0)

VSN Service
Provider
(Tier n)

….

Client

3rd Party
Service
Providers

WSI
Enablers

Figure 2 The VSN cascading architecture.

VSN
application

Client

WSI
Enablers

DVNS

VSN Core Framework

Services
Registry

DVNS
Back-End

DVNS
Front-End

LGW
IF

VSN Service Provider

Applications

Service
Provisioning

Initiator

VSN Manager

VSN-Service
Negotiator

WSI
Interface

Vi
rt
ua

liz
at
io
n

M
an

ag
er

Figure 3 Building blocks of the VSN core framework.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 7 of 19

measurement thresholds, and the unit of measurement.
The input in this service is the sensor observations and
the outputs can be the raw and processed sensor data,
as well as the history of the sensor data.
The additional DVNS components support the Ser-

vices Registry functionality in the following manner. The
DVNS Back-End component is responsible for updating
the Services Registry on a periodic or on-demand basis.
In particular, using crawling techniques the DVNS
Back-End queries all the known/registered WSI Enablers
in order to discover new services or remove services
that are not offered any more. It may also enable colla-
boration between DVNSs hosted by different service
providers in case a contract is established. In addition,
the WSI Enablers and/or the offered services may
directly be registered to the Services Registry via the
DVNS Back-End component. The main functionality of
the DVNS Back-End is to register/discover new WSI
Enablers, performing crawling of known/registered WSIs
for new operational and supporting services and imple-
menting ontology-based representations of services’
description. The discovered or registered VSN services
are then published by the DVNS Front-End to the VSN
end-users/subscribers. The DVNS Front-End is also
used for querying and retrieving VSN services based on
end-user criteria. The main functionality of the DVNS
Front-End includes publishing of VSN services in a
transparent way to the end-user applications, processing
of user queries and translation to VSN services and
interactive ontology navigation features.
As soon as a VSN service has been preliminary quali-

fied by the end-user, the Service Provisioning Initiator
component is invoked to authenticate the user and
check the user permissions. Then, it initiates a VSN
Manager instance. In more detail, the Service Provision-
ing Initiator will contain a user database with the
needed information in order to check user access rights
and authentication privileges, get the user’s contracts
service level agreements, obtain from the services regis-
try all necessary information and initiate a VSN Man-
ager instance.
The VSN Manager, responsible for service negotiation,

session establishment, and monitoring, may also per-
form service renegotiation and accounting/billing of the
VSN services. It consists of the following subcompo-
nents: the VSN Service Negotiator, the Virtualization
Manager, and the WSI Interface. As it shown in Figure
3, the interface between the VSN Manager and the
DVNS is implemented by the VSN Service Negotiator.
This component receives from the DVNS (Service Provi-
sioning Initiator) all necessary information in order to
negotiate and establish a new VSN service. This infor-
mation includes a list with the operational service(s)
requested by the user, the WSI Enablers that offer such

operational service(s), the WSI entry points that are
responsible for the relevant operational and supporting
services, etc. The VSN Service Negotiator queries all
WSI and gets up-to-date knowledge of the relevant
operational and supporting services, along with the rele-
vant WSI capacity to support a new instance of the
operational service (i.e., the WSI available resources).
Based on this information and additional non-functional
information (e.g., user profile, access permissions, con-
tracts, prices, etc.), the VSN Negotiator will negotiate
with the user application the VSN service provisioning.
In this phase, the user may refine his/her requirements
and negotiate the VSN service establishment.
If the service negotiation is not successful, the session

is closed and the VSN Manager instance is dissolved.
Otherwise, the Virtualization Manager is invoked. At
contract start-up, the Virtualization Manager communi-
cates with the various known/registered WSIs and
requests the allocation of the necessary resources. This
module is also responsible for hiding from the end-user
application the actual WSI sensor nodes and the real
service(s) (which may run in multiple WSIs), and offer
the VSN service in a transparent way, appearing as a
single operational service of the VSN service provider.
Each WSI Interface is a logical process that is responsi-
ble for interfacing the WSI and hides any specificities of
the WSI.
At run time, and based on the Contract Service Level

Agreement, the Virtualization Manager may communi-
cate with the WSIs that offer the requested operational
services and check the session status/quality. Addition-
ally, the WSI Interfaces may inform the Virtualization
Manager if an error has been reported or trapped. In
case of failure to meet the negotiated contract, the Vir-
tualization Manager will communicate with the VSN
Service Negotiator. The Negotiator will initially try to
adopt countermeasures by negotiating with the WSI
Enablers, a new session establishment. If anomalies can-
not be compensated and the Service Level Agreement is
broken, the Negotiator may try to re-negotiate with the
end-user application or close the connection with an
error message.
Finally, the LGW IF enables the interconnection

between Legacy WSIs and the VSN network architec-
ture. An entity outside the WSI should offer an LGW
IF, which should be offered either by the WSI Enabler
or by a Service Provider. Alternatively, each VSN Service
Provider should implement instantiations of VSN Gate-
way (VGW) as interconnection functions for LGW. The
LGW IF should offer the logical VGW functionality (i.e.,
status and negotiation of services and resources, ontolo-
gical representations), without realizing the remaining
physical layer functions. In addition to the VSN Core
framework, the VSN Service Provider may offer

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 8 of 19

applications to the end-users, collaborating with VSN
service providers or third-party service providers. These
applications are customized to each VSN service provi-
ders and form the Service Provider’s portfolio offering.

4. Wireless sensor islands
A WSI consists of at least one sensor node (normally a
group of sensor nodes) and one gateway (acting as the
WSI entry point). Collocation of their functionality is
not excluded in case of autonomous addressable sensor
nodes. If the gateway is mobile, IP radio access should
be provided in a transparent way by the network infra-
structure (see, e.g., [37]).
Within a VSN, the following three types of WSIs are

considered (Figure 4):

• VSN-aware WSI: These are WSIs, which consist of
VSN-aware Sensor Nodes (VaSN) and a VGW. It is
assumed that within a VSN-aware WSI each node
(sensor or gateway) is VSN-aware and has knowl-
edge of the VSN service offerings. As it is shown in
Figure 4, each VaSN may instantiate one or more
virtual sensor nodes in the process of sharing its
resources across multiple VSNs.
• Proprietary WSI: These are WSIs, which consist of
Proprietary Sensor Nodes (PSNs) interconnected via
a Proprietary Gateway. Due to the complexity that
they might inherit, in order to guarantee intercon-
nection with the VSN network architecture, we
assume that the proprietary gateway offers a VSN-
compliant interface, so it is considered as VGW.
• Legacy WSI: These are WSIs, which consist of
Legacy Sensor Nodes (LSNs) interconnected via a
Legacy Gateway (LGW). We assume that within a
Legacy WSI, in order to offer interconnection with
the VSN network architecture, an entity outside
the WSI should offer a LGW IF. This interworking
function should be offered either by the WSI
Enabler or by a service provider. Alternatively, each
VSN Service Provider should implement instantia-
tions of VGW as interconnection functions for
LGW.

In the following, we focus on the VSN-aware WSI as
we assume that the other WSI types may appear as
VSN-aware WSI with limited functionality.

4.1. Gateway architecture
The VGW is the device in charge of bridging between
one VSN-aware WSI and the VSN Service Provider. It
handles the bridging in terms of “lower layer” communi-
cation protocols (e.g., Medium Access Protocol, IPv4/
IPv6, routing protocol), and protocols for upper layers
(e.g., middleware, application). The VGW manages the
discovery of operational and supporting services, as well
as available resources, within the WSI. If required, the
VGW notifies VSN Service Provider(s) about the avail-
able services and resources.
A functional view of the VGW is shown in Figure 5,

and its main components are described next:

• VGW API Interface: this is an interface used by any
external component to instantiate a VSN configura-
tion within the WSI, retrieve the list of available
resources/services, retrieve a history of data, or exe-
cute an action onto a specific node.
• VSN controller: This module receives the instruc-
tions to configure, within the WSI, all aspects related
to the enforcement of VSNs for supporting VSN ser-
vices. It maintains various registries including a reg-
istry of the subscriptions per VSN to a set of
operational and supporting services provided by the
WSI, a registry of tasks that are deployable on the
sensor nodes involved in the operation of a VSN, a
data logger that maintains a history of the data pub-
lished by nodes involved in an enforced VSN (e.g.,
measurements, alarms, etc.) and a registry of the
routing instances configured in the WSI. The VSN
controller embeds a component named WSI and
Sensor Node Configurator to configure the function-
ing of individual sensor nodes or networking proto-
cols at the scale of the WSI. When receiving the
configuration instructions to instantiate a VSN, this
configuration component interacts with: the Routing
Engine (e.g., an RPL driver, in order to run an

Proprietary WSIVSN-Aware WSI Legacy WSI

VGW LGW

VaSN
PSNPSN

PSN

LSN

LSN

LSN
VaSN

VGW

VaSN

Figure 4 Types of WSIs.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 9 of 19

additional instance of the RPL protocol [38]), the
WSI MAC Driver module, in order to instantiate a
specific MAC scheduling and the Resource and Ser-
vice controller, in order to subscribe to specific pub-
lishing services and manage the resources.
• Resource and Service Controller: This module
negotiates with the VSN Service Provider and keeps
a registry of all available operational and supporting
services and the status of all WSI available resources.
It uses a scalable publish/subscribe engine in order
to handle published events and inform the VSN
Manager about the subscribed services and the allo-
cated resources status, as well as pushing actions to
specific nodes.
• Routing Engine: it receives from the VSN controller
the instructions to configure one or more routing
instances (e.g., multiple RPL Destination-Oriented
Directed Acyclic Graph instances), with one or many
VSN applications per routing instance. This engine
includes a WSI Routing Driver which is in charge of
handling the operation of the WSI routing protocol
(s), and handling for each protocol, the possibly mul-
tiple instances of routing plane. In addition, the
engine encompasses a routing converter which is in
charge of converting received packets from the WSI

into the appropriate format to be sent over the
legacy network.

4.2. Sensor node architecture
The functional architecture of a VSN sensor node is
described in terms of its protocol stack as shown in Fig-
ure 6. In this architecture, virtualization is realized
through efficient management of (a) node’s services and
resources and (b) functions at the network and MAC
layers. Furthermore, the virtualization is done in a way
that takes into account availability of security features
and requirements for energy consumption.
Virtualization at the node level is undertaken by the

Node Virtualization Manager (NVM). This component
manages the services and resources provided by the sen-
sor node. To discover available resources, the NVM
interacts with several components (e.g., Energy Manager,
components at network, MAC, and physical layers) in
order to retrieve information regarding remaining
energy, queue status, channel availability and usage,
unoccupied RAM size, etc. This information is made
available to the middleware component, which, in turn,
presents it to potential resource consumers in a plat-
form-independent resource description format. The

Figure 5 VGW architecture.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 10 of 19

NVM also maintains an association between the QoS
requirements imposed on the delivery of the different
services (e.g., in terms of reliability, delay, and trust) and
maps different service and resource requests to different
processes, routing instances, and configurable MAC pro-
tocol parameters. Furthermore, it can enable the Delay-
Tolerant Networking (DTN) Manager when the applica-
tion serviced by a VSN is delay-tolerant. In addition, the
NVM interacts with components at middleware layer to
store/update the services offered by the sensor node in a
dynamic way (e.g., after the completion of a reconfigura-
tion query from VGW).
The role of the middleware layer is twofold: first, to pro-

vide an abstracted and standard view of supported opera-
tional services (in particular, separated from the

functioning of sensor hardware), and second to enable ser-
vice and resource discovery management within a WSI.
As such, the VSN middleware hides the hardware and
software implementation details from the application layer
and allows seamless data management between nodes.
Additionally, it encompasses mechanisms to enable man-
agement of the discovery of services and resources within
the WSI and provides, through specific services, the cap-
ability for re-purposing existing sensor network deploy-
ments and creating VSNs, according to user needs.
Regarding the middleware realization, we are currently
elaborating on a solution based on the emerging CoAP
application protocol [35] running on top of UDP.
In what regards the functions of the network layer,

main focus is placed on the RPL routing protocol [38]

MAC Layer

Network Layer

Middleware Layer

Service Discovery Manager

Resource Discovery Manager

Application Layer

PHY Layer

N
ode

Virtualization
M
anager

(interfaces
also

w
ith

the
E
nergy

and
S
ecurity

M
anagers)

En
er
gy

M
an

ag
er

Adaptation Layer (MAC interface)

Trust
Manager

Routing Protocol
instance

Neighbor
Table

DTN
Manager

Se
cu

rit
y
M
an

ag
er

Figure 6 VSN node architecture.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 11 of 19

as it represents a promising solution for supporting vir-
tualization through the realization of multiple coexistent
routing instances. Each one of these instances may have
a Neighbor Table component, which will be maintained
in this layer to facilitate the routing/forwarding process.
In this respect, the selection of proper routing metrics
to accommodate different and sometimes contradicting
requirements set by different applications, in such a way
that consistency, optimality, and loop-freeness routing
requirements are met, is an open research topic that we
are currently working on.
Tackling with security-related characteristics, the pro-

posed routing solution will specify trust metrics that will
be able to investigate and exclude malicious nodes from
the traversed path to the destination node (VGW). The
attacks that a trust management system can detect
depend on the number and type of node behavior
aspects that are monitored [39] and range from network
up to application layer attacks (data inconsistency).
Trading off hardware resource requirements for the rea-
lization of the trust system and mitigation of the most
probable attacks, the VSN trust system will be capable
of detecting the black-hole, selective forwarding, denial
of routing service, and selfish behavior attack. All these
attacks lead to data loss which (when systematic) lead to
loss of connectivity.
Furthermore, the trust-aware routing protocol will

make use of possible security services offered by the
Security Manager (e.g., encryption in the MAC or net-
work layers) in order to select the optimal (QoS-based)
path, according to the user request. Given that encryp-
tion aims to ensure data confidentiality, privacy, data
integrity and authenticity, and a variety of encryption
schemes can be realized, different security levels can be
defined. The encryption scheme implemented on a node
and/or the offered security level can be used to decide
whether the node can be included in a specific routing
instance satisfying the application requirements. In this
way, the availability of security features represents con-
straints taken into account by the routing component
during the creation of the routing tables. All informa-
tion related to trust management will be stored and pro-
cessed by a certain component, called Trust Manager.
Through the discrimination between nodes supporting
security services and through the implementation of a
trust management system, the proposed VSN defends
against network layer attacks and data confidentiality,
integrity, and authentication attacks.
In case there is a lack of continuous network connec-

tivity and the running applications can tolerate delays,
the presented VSN approach may optionally make use
of a DTN mechanism. This mechanism is handled by
the DTN Manager, which closely collaborates with a
specific routing protocol instance and takes care of

communication when a disconnection in the network
cannot be repaired by the routing protocol’s mainte-
nance mechanisms.
In the VSN case, DTN is used when a formerly con-

nected WSI, becomes disconnected for a long period of
time, and therefore partitioned in a number of smaller
WSIs. DTN basically relies on some nodes’ mobility in
order to deliver data among these WSIs and establish
end-to-end communication. The DTN mechanism can
be activated when the routing protocol (specifically, the
component of the protocol that is responsible for neigh-
bor discovery) detects disconnection in the network
which cannot be repaired by the protocol’s mechanisms.
Also, upon detection of the re-establishment of connec-
tivity, the network layer can deactivate the DTN
Manager.
According to the specific DTN protocol used, the

DTN Manager can include functionalities, such as node
addressing, buffering, queue management policies,
metric calculations for probabilistic delivery rate, etc.
These functionalities and buffers can be assumed as
being internal to the DTN Manager, but some struc-
tures can be shared with the routing protocol (for
instance a neighbor discovery process and the neighbor
table).
To support the concept of virtualization, different

MAC layers may be instantiated in a wide variety of
applications. Apart from the MAC layer responsibility
to manage transmission of packets from the upper
layers across the physical wireless channel to a neigh-
boring node, an interface to Energy Manager is fore-
seen in order for the MAC layer to manage issues
related to RF energy (e.g., transmission power and
sleep times). Multiple instantiations of the MAC Adap-
tation Layer will act as an interface to upper layers
(network layer) and cross-layer entities (Energy Man-
ager and NVM) to tune MAC layer parameters (e.g., to
instantiate different time/frequency scheduling pat-
terns). In the proposed node architecture, the chal-
lenge at MAC is to support different hardware owners
and for each different applications. For example, in
subsequent developments related to the emerging IEEE
802.15.4e, this is solved by having different super-
frames with different duty cycles running in parallel.
Other link layer technologies, such as IEEE 802.15.4-
2003/2006, would need to handle such virtualization
challenge sequentially and thus, not to be depleted
quickly, need to be highly energy efficient.
Finally, The Energy Manager component is responsi-

ble for the transmission power level of the sensor node
as well as for the provision of information regarding the
remaining battery energy. Under certain circumstances
and depending on the signal strength, this information
can be used to decrease transmission power and, thus,

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 12 of 19

prolong network lifetime, or even achieve load
balancing.

5. Interfaces between system components
The interactions between the system components,
namely the VSN application, the DVNS, the VSN Man-
ager, the VGW, and the sensor node, are realized
through the interfaces depicted in Figure 7. Prior to
describing the main operations that are executed over
these interfaces we briefly discuss the phases of the
application’s lifetime in order to depict in a more clear
way the interactions involved between components.
The lifetime of VSN applications is divided in three

phases:

• Creation: During this phase, the user and the VSP
negotiate and agree a “service contract”. In this
phase, the user describes to the VSP a desired ser-
vice, and the VSP proposes its possible implementa-
tion based on the availability of VSN resources. This
interactive cycle is repeated through successive
adjustments of the description of the desired ser-
vices, proceeding towards a more and more detailed
qualification of the desired services and how it will
be provided. At the end of this interactive negotia-
tion, the user and the VSP agree on a detailed
description of the application and of the conditions
under which it is to be provided. When this agree-
ment is reached, the creation phase is over and the
service can begin.
• Execution: During this second phase, the VSN pro-
vides the service requested, and the application con-
sumes it. The execution of the service is taken care of
by the network, automatically and transparently to the
user. This phase can be very short (execution of a
query and immediate return of the query result) or can

be long lasting; in any case, while the service is being
executed the VSN Manager takes care of its execution.
• Termination: The end criteria for a service can be
implicit in the service requested (this is the case, for
instance, when the service is the execution of a sin-
gle, immediate query), or the service can explicitly
be terminated by the application (this typically hap-
pens for long-lasting services). Termination condi-
tions may also be agreed at service negotiation (e.g.,
“for one day”, or “until this predicate becomes true”).

5.1. Interface between application and DVNS
The DVNS is the first contact point between the applica-
tions and the VSN system. The applications may run
either at the end-user’s machine or be hosted by the VSP.
In either case, functions provided by this interface are
used during the application initiation/creation and preli-
minary service negotiation phase. The application uses the
following functions which are provided by the DVNS:

• Authenticate_User: This is used at the beginning of
the application creation phase in order for the user
to request authentication.
• Browse_Services: the application uses this function
repeatedly, to qualify in growing detail the desired
service.
• Start_Negotiation: this is a request sent by the
application in order to declare that it wishes to pro-
ceed with negotiation for a specified service offered
by the system.

5.2. Interface between DVNS and VSN manager
As soon as the nature of the service has been clarified
and the user application has declared to the DVNS its
intention to proceed with service negotiation, the DVNS

Sensor VGW

VSN
Manager

DVNS

Application

Figure 7 System components and their interfaces.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 13 of 19

spawns a new instance of the VSN Manager to handle
the service negotiation and provisioning. This task is
supported by the Create_Instance function of the
DVNS-VSN Manager interface.

5.3. Interface between application and VSN manager
This interface is used for service negotiation and initia-
tion between the application and the VSN Manager and
for data delivery from the VSN Manager to the applica-
tion. When the negotiation phase is complete, the user
is aware of the current status of the requested services
described as up-to-date operational services. The follow-
ing functions are supported over this interface:

• Negotiate_Service: It is used by user/application to
negotiate service provisioning with the VSP. This
function is also used for service renegotiation in
case changes to the service parameters are
requested by the application (e.g., extension of the
planned duration, modification of the geographical
scope of the service, change of the data gathering
rate, etc.). It is also used to terminate a service
explicitly.
• Initiate_Service: This function is used by the Appli-
cation after successful negotiation with the VSN
Manager to denote intention for service execution.
• Retrieve_Service_Data: It is used by the application
to ask for data in a synchronous manner (i.e., on a
request/response basis) according to the specified
service.
• Publish_Data: It is used by the VSN Manager to
feed the application with the data that it has
requested. This is particularly important for appli-
cations whose primary purpose is data gathering.
However, this function is also used for other types
of applications because it is through the Publish_-
Data function that the VSN Manager is able to
communicate to the application relevant events
like, for example, the inability to accomplish the
required service.

5.4. Interface between DVNS and VGW
Using this interface, the DVNS retrieves the list of ser-
vices offered by the WSI under the VGW’s control. In
addition, this interface is used by the VGW to notify the
DVNS of services updates and to allow for registration
of a WSI with the DVNS. The following functions are
provided by this interface:

• Publish_Services: When invoking it, the DVNS
queries all known/registered VGWs for discovering
new services, removing services not offered anymore

or updating changes in the services provided by
WSIs.
• Update_Services: The DVNS provides this func-
tion in order to allow a VGW to asynchronously
update the list of WSI supplied services. The func-
tion can be invoked on a periodic or on-demand
basis.
• Update_WSI: This provides the capability for new
WSIs accessible by the service provider to be regis-
tered in the Services Registry (part of the DVNS) so
that applications can access them.

5.5. Interface between VSN manager and VGW
This interface allows the VSN Manager to retrieve the
current status of a WSI regarding its available services
and resources and to request service initiation. It is also
used by the VGW to update its status and provide
requested data to the VSN Manager. The functions of
this interface include the following:

• Update_Status: The VGW provides this function
to allow the VSN Manager to get an up-to-date view
of the available operational services and resources at
the involved WSI. Based on the VGW response, the
VSN Manager can provide to the application further
feedback to be used in the negotiation phase (e.g.,
for service parameter reconfiguration).
• Initiate_WSI_Service: This function is used by the
VSN Manager to communicate to the VGW
requests for service initiation. Execution of this func-
tion involves the enforcement of a VSN at the WSI
level.
• Publish_WSI_Data: This function is used by the
VGW to export data published by sensor nodes to
the appropriate VSN Manager.
• Retrieve_Service_Data: It is used to support data
retrieval from the VGW on a request/response
fashion.
• Update_WSI_Status: This is used by the VGW to
communicate to the VSN Manager changes in the
status of the corresponding WSI supplied services
and resources.

5.6. Interface between VGW and sensor node
Using this interface, the VGW becomes aware of the
services and resources that are available at the sensor
node and the sensor node receives requests for reconfi-
guration of supporting services and resources. Further-
more, functions of this interfaces are used for
transferring data from the sensor node to the VGW
according to the publish/subscribe or request/response

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 14 of 19

communication models. The functions of this interface
include the following:

• Get_Supported_Services. This function is used by
the VGW to query the services supported by the
sensor node.
• Get_Available_Resources: The function is used by
the VGW to retrieve the list of resources provided
by a sensor node.
• Retrieve_Service_Data: This is used by the VGW to
trigger data collection from sensor nodes in a syn-
chronous manner.
• Subscribe: The VGW uses this function to send
requests for subscription to particular services of a
sensor node. The requests can be sent in a unicast
or broadcast fashion depending on the user query.
The subscription request is expressed through a con-
junction of constraints over attribute values, in a
form of a tuple (attribute, operator, value).
• Rcv_reconfiguration: Reconfiguration of basic func-
tionalities such as scheduling schemes or routing
algorithms is handled through this function. Besides
the basic reconfiguration of certain parameters deal-
ing with the communication protocols (e.g., MAC
duty cycle), this function also deals with the reconfi-
guration of supporting services and resources (e.g.,
reconfiguration of the sampling rate for the sensed
attribute).
• Get_Status: This is used by the VGW to get cur-
rent information on usage associated to a service or
to the consumption of resources. Resource informa-
tion may include, among others, the number of
instances that a sensor node participates in (either as
a router or as a sensing device) or memory/proces-
sor allocation.
• Rcv_notification. When the constraints of the sub-
scription to a service are satisfied, the VGW receives,
through this function, a notification from the sensor
node. The notification is of the form (attribute,
value).
• Notify_supported_services: Using this function a
sensor node can proactively notify the VGW about
its supported services.
• Notify_available_resources. This is used by a sensor
node to communicate to the VGW, in a proactively
manner, its available resources.

6. Service registration, service negotiation, and
session establishment
The registration of the services in the VSP involves two
steps (Figure 8). In the first step, the services of all
WSIs that have a service agreement with the VSP are
discovered by their respective VGW. To accomplish

this, the VGW collects information related to services
provided by all sensors comprising the WSI, as well as
their available resources.
Prior to any service and resource discovery, a path

between the VGW and every sensor node has to be
established. To do this, the VGW configures the opera-
tion of the MAC layer as well as the operation of the
routing protocol within the WSI, which deals with the
creation of multiple instances of routing planes (e.g.,
several RPL Destination Oriented Directed Acyclic
Graphs, with different metrics per RPL instance). By
using the Get_supported_services and Get_available_re-
sources functions, the VGW can collect (and periodically
update) all services/resources available to the sensor
nodes in order to support (new or existing) user queries.
Another option consists in sensor nodes announcing
proactively their provided services/resources to the
VGW, using the Notify_supported_services and Notify_a-
vailable_resources functions.
In the second step, the collected services and

resources are sent to the DVNS by calling the Upda-
te_WSI (in case of new WSIs) and Update_services func-
tions, or can be browsed (possibly in a periodic fashion)
by the DVNS via the Publish_services function. All dis-
covered services are stored in the Services Registry mod-
ule of the DVNS.
At the beginning of the application creation phase,

and prior to service consumption, the user interacts
with the DVNS to negotiate the provided service (Figure
9). The first operation is to qualify himself/herself, by
using the Authenticate_User function. After doing that,
the user becomes aware of the available services by call-
ing (possibly in a repeatable fashion) the Browse_Services
function. As soon as the desired service has been identi-
fied, the user’s application notifies the DVNS of the
intention to negotiate the implementation details of the
service (QoS, guaranteed level of services, billing, fall-
back policies, etc.) by sending the Start_Negotiation
message. The service negotiation and the subsequent
service delivery processes are handled by an instance of
the VSN Manager, which is created for this purpose by
the DVNS through the execution of the Create_Instance
function. To serve negotiation requests, the VSN Man-
ager interacts with the involved VGWs, by calling the
Update_Status function, to retrieve the list of available
WSI services and resources. The VGW will, in turn,
communicate with the sensor nodes, using the Get_Sta-
tus function, to obtain an updated view of the available
services and resources at the node level.
After the service negotiation phase is completed suc-

cessfully, the application asks for service initiation by
sending an Initiate_Service request to the VSN Manager
(Figure 10). Based on the requested service, the VSN
Manager identifies the WSI(s) that must be engaged for

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 15 of 19

the provisioning of the service and contacts its(their)
VGW(s) through the Initiate_WSI_Service function call.
This function is used to:

• Specify the number of nodes to be used for the
provisioning of the service (e.g., exact, maximum or
minimum number of nodes).

• Specify the operational services to be subscribed
on the selected nodes.
• Specify the parameters that must be communicated
to the WSI Routing Driver of the VGW.

The VGW uses the Rcv_Reconfiguration function to
enforce/configure a VSN on the WSI and the Subcribe

DVNS SensorVGW

Notify_available_resources

Notify_supported_services

Creation of default routing/MAC planes
and connectivity establishment

or

Get_supported_services

Get_available_resources

Update_services

or

Publish_services

Update_WSI

VGW of new WSI

Creation of service portfolio

Creation of service
portfolio

Figure 8 Message sequence chart for service registration in the VSP.

Application VSN ManagerDVNS VGW

Authenticate_User

Browse_Services

Browse_Services
...

Start_Negotiation
Create_Instance

Negotiate_Service Update_Status

Sensor

Get_Status

Figure 9 Message sequence chart for service negotiation.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 16 of 19

function to register itself as a recipient for data pro-
duced by the sensor when the condition of the subscrip-
tion is satisfied. These data are communicated back to
the VGW through the Rcv_notification function. In
order to export data published by sensor nodes towards
the appropriate VSN Manager instance, the VGW uses
the function Publish_WSI_data.
Figure 10 illustrates the sequence of messages involved

in sensor data delivery based on the publish/subscribe
communication paradigm. For service execution on a
request/response basis the Application sends a Retrie-
ve_Service_Data request to the VSN Manager. In case
cached data are available, the VSN Manager may return
the requested data immediately; otherwise, the Retrie-
ve_Service_Data is sent all the way to the sensor node.

7. Conclusions and future study
We have presented the system architecture of a VSN
system that extends the concept of virtualization down
to the sensor nodes while ensuring advanced perfor-
mance and service exploitation. The global virtualization
architecture is built around (a) software components
that allow user applications to negotiate, execute, and
monitor a service obtained by composing basic services
provided by sensors, and (b) the architectural design of
the physical VSN-aware sensor node and the VSN-
aware gateway. The proposed architecture accommo-
dates the flexibility and adaptability required to achieve
an energy-efficient realization of VSNs mainly through
the definition of both horizontal and vertical functional
layers in the sensor node that allow for different

instantiations of the MAC and routing protocols to sup-
port the concept of virtualization and provide efficient
support to different VSN applications that may run on
the node.
Currently, we have developed simulation models for

the MAC and trusted routing components and complete
software designs for all parts of the proposed VSN pro-
visioning system. The simulation study has produced
promising results regarding the capability of the pro-
posed link and routing layer solutions to (a) support the
virtualization concepts described in this article, and (b)
accommodate applications with diverse communication
requirements in terms of delay and trust. Future study
will address the implementation of all system compo-
nents, the development of testbeds that will federate
resources from heterogeneous sensor network platforms,
and the experimental evaluation of the proposed
solutions.

Abbreviations
DTN: Delay-Tolerant Networking; DVNS: Dynamic Virtual Network Server;
LGW IF: Legacy Gateway Interworking Functions; LGW: Legacy Gateway; LSN:
Legacy Sensor Node; M2M: Machine-to-Machine; MAC: Medium Access
Control; NVM: Node Virtualization Manager; OS: Operating System; PGW:
Proprietary Gateway; PSN: Proprietary Sensor Node; QoS: Quality of Service;
VaSN: VSN-aware Sensor Node; VGW: VSN Gateway; VSN: Virtual Sensor
Network; VSP: VSN Service Provider; WSI: Wireless Sensor Island; WSN:
Wireless Sensor Network.

Acknowledgements
This publication is based on work performed in the framework of the
Project VITRO-257245, which is partially funded by the European
Community. The authors would like to acknowledge the contributions to
the VITRO Project of colleagues from Hellenic Aerospace Industry, Thales

Application VGWVSN Manager Sensor

Service negotiated successfully

Initiate_Service
Initiate_WSI_Service

Rcv_Reconfiguration

Subscribe

Rcv_notification
Publish_WSI_Data

Publish_Data

Subscription
condition satisfied

Figure 10 Message sequence chart for session establishment.

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 17 of 19

Communications SA, Telefonica Investigation Y Desarrollo SA, Centre
Technologic de Telecomunicacions de Catalunya, Research Academic
Computer Technology Institute, Technological Educational Institute of
Chalkida, Zodianet SAS, Wlab SRL, and SELEX Sistemi Integrati S.P.A.

Author details
1Technological Educational Institute of Chalkida, 34400 Psachna, Euboea,
Greece 2Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av.
Carl Friedrich Gauss 7, 08860 Castelldefels, Barcelona, Spain

Competing interests
The authors declare that they have no competing interests.

Received: 1 October 2011 Accepted: 6 April 2012 Published: 6 April 2012

References
1. AP Jayasumana, Q Han, TH Illangasekare, Virtual sensor networks - a

resource efficient approach for concurrent applications, in Proceedings of
the International Conference on Information Technology (ITNG ‘07),
Washington, DC, USA, pp. 111–115 (2007)

2. R Tynan, GMP O’Hare, MJ O’Grady, C Muldoon, Virtual sensor networks: an
embedded agent approach, in Proceedings of the International Symposium
on Parallel and Distributed Processing with Applications (ISPA-08), Sydney,
Australia, pp. 926–932 (Dec 2008)

3. NMMK Chowdhury, R Boutaba, A survey of network virtualization. Comput
Netw. 54(5), 862–876 (2010). doi:10.1016/j.comnet.2009.10.017

4. The VITRO project http://www.vitro-fp7.eu. Accessed 1 Feb 2012
5. P Levis, S Madden, J Polastre, R Szewczyk, K Whitehouse, A Woo, D Gay, J

Hill, M Welsh, E Brewer, D Culler, TinyOS: an operating system for sensor
networks, in Ambient Intelligence, ed. by Weber W, Rabaey J, Aarts E
(Springer, 2005), pp. 115–148

6. A Dunkels, B Gronvall, T Voigt, Contiki–a lightweight and flexible operating
system for tiny networked sensors, in Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks (LCN ‘04), Washington,
DC, USA, pp. 455–462 (2004)

7. S Bhatti, J Carlson, H Dai, J Deng, J Rose, A Sheth, B Shucker, C Gruenwald,
A Torgerson, R Han, MANTIS OS: an embedded multithreaded operating
system for wireless micro sensor platforms. Mob Netw Appl. 10(4), 563–579
(2005). doi:10.1007/s11036-005-1567-8

8. E Trumpler, R Han, A systematic framework for evolving TinyOS, in
Proceedings of the 3rd Workshop on Embedded Networked Sensors (EmNets
2006), Cambridge, MA, USA, pp. 61–65 (May 2006)

9. P Corsini, P Masci, A Vecchio, Configuration and tuning of sensor network
applications through virtual sensors, in Proceedings of the 4th Annual IEEE
International Conference on Pervasive Computing and Communications
Workshops (PERCOMW’06), Pisa, Italy, pp. 316–320 (13-17 March 2006)

10. L Caroprese, C Comito, D Talia, E Zumpano, A logic approach to virtual
sensor networks, in Proceedings of the Fourteenth International Database
Engineering & Applications Symposium (IDEAS ‘10), Montreal, Quebec,
Canada, pp. 149–156 (2010)

11. HMND Bandara, AP Jayasumana, TH Illangasekare, Cluster tree based self
organization of virtual sensor networks, in Proceedings of the IEEE Globecom
Workshops, New Orleans, USA, pp. 1–6 (November 2008)

12. P Levis, D Culler, Maté: a tiny virtual machine for sensor networks, in
Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA,
USA, pp. 85–95 (October 2002)

13. P Levis, D Gay, D Culler, Active sensor networks, in Proceedings of the 2nd
USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI’05), Boston, MA, USA, pp. 343–356 (May 2005)

14. Y Yu, LJ Rittle, V Bhandari, JB Lebrun, Supporting concurrent applications in
wireless sensor networks, in Proceedings of the 4th International Conference
on Embedded Networked Sensor Systems (SenSys’06), Boulder, Colorado, USA,
pp. 139–152 (2006)

15. J Koshy, R Pandey, VMSTAR: synthesizing scalable runtime environments for
sensor networks, in Proceedings of the 3rd International Conference on
Embedded Networked Sensor Systems (SenSys’05), San Diego, California, USA,
pp. 243–254 (2005)

16. P Bonnet, JE Gehrke, P Seshadri, Towards sensor database systems, in 2nd
International Conference on Mobile Data Management (MDM) LNCS, vol.
1987. Springer, pp. 3–14 (2001)

17. S Madden, MJ Franklin, JM Hellerstein, W Hong, TinyDB: an acquisitional
query processing system for sensor networks. ACM Trans Database Syst.
30(1), 122–173 (2005). doi:10.1145/1061318.1061322

18. K Aberer, M Hauswirth, A Salehi, The global sensor networks middleware
for efficient and flexible deployment and interconnection of sensor
networks. Technical Report, Ecole Polytechnique Federale de Lausanne
(EPFL) (2006)

19. D Gelernter, Generative communication in Linda. ACM Comput Surv. 7(1),
80–112 (1985)

20. C Curino, M Giani, M Giorgetta, A Giusti, AL Murphy, GP Picco, TinyLIME:
bridging mobile and sensor networks through middleware, in Proceedings
of the 3rd IEEE International Conference on Pervasive Computing and
Communications (PerCom 2005), Kauai, Hawaii, pp. 61–72 (March 2005)

21. K Terfloth, G Wittenburg, J Schiller, FACTS–a rule-based middleware
architecture for wireless sensor networks, in Proceedings of the First
International Conference on Communication System Software and Middleware
(Comsware 2006), New Delhi, India, pp. 1–8 (January 2006)

22. E Souto, G Guimarães, G Vasconcelos, M Vieira, N Rosa, C Ferraz, J Kelner,
Mires: a publish/subscribe middleware for sensor networks. Personal Ubiquit
Comput. 10(1), 37–44 (2006). doi:10.1007/s00779-005-0038-3

23. S Lai, J Cao, Y Zheng, PSWare: a publish/subscribe middleware supporting
composite event in wireless sensor network, in Proceedings of the IEEE
International Conference on Pervasive Computing and Communications
(PerCom 2009), Galveston, TX, USA, pp. 1–6 (March 2009)

24. T Liu, M Martonosi, Impala: a middleware system for managing autonomic,
parallel sensor systems, in Proceedings of the 9th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (PPoPP’03), San Diego,
California, USA, pp. 107–118 (2003)

25. F Oldewurtel, J Riihijarvi, K Rerkrai, P Mahonen, The RUNES architecture for
reconfigurable embedded and sensor networks, in Proceedings of the Third
International Conference on Sensor Technologies and Applications
(SENSORCOMM’09), Athens, Greece, pp. 109–116 (June 2009)

26. PJD Cid, D Hughes, J Ueyama, S Michiels, W Joosen, DARMA: adaptable
service and resource management for wireless sensor networks, in
Proceedings of the 4th International Workshop on Middleware Tools, Services
and Run-Time Support for Sensor Networks (MidSens ‘09), Urbana Champaign,
Illinois, USA, pp. 1–6 (2009)

27. CL Fok, GC Roman, C Lu, Rapid development and flexible deployment of
adaptive wireless sensor network applications, in Proceedings of the 25th
IEEE International Conference on Distributed Computing Systems (ICDCS’05),
Columbus, OH, USA, pp. 653–662 (June 2005)

28. I Chatzigiannakis, G Mylonas, S Nikoletseas, jWebDust: a java-based generic
application environment for wireless sensor networks, in Proceedings of the
1st IEEE International Conference on Distributed Computing in Sensor Systems
(DCOSS ‘05), Marina del Rey, CA, USA, pp. 376–386 (2005)

29. J Shneidman, P Pietzuch, J Ledlie, M Roussopoulos, M Seltzer, M Welsh,
Hourglass: an infrastructure for connecting sensor networks and
applications. Technical Report, Harvard TR-21-04 (2004)

30. Botts M, Percivall G, Reed C, Davidson J (eds.), OGC sensor web
enablement: overview and high level architecture. White Paper Version 3
(Open Geospatial Consortium Inc., 2007)

31. A Antoniou, I Chatzigiannakis, A Kinalis, G Mylonas, S Nikoletseas, A
Papageorgiou, A peer-to-peer environment for monitoring multiple wireless
sensor networks, in Proceedings of the 2nd ACM workshop on Performance
monitoring and measurement of heterogeneous wireless and wired networks
(PM2HW2N’07), Chania, Greece, pp. 132–135 (2007)

32. Botts M, Robin A, Davidson J, Simonis I (eds.), OGC sensor web enablement:
architecture document. Discussion Paper Version 1 (Open Geospatial
Consortium Inc., 2006)

33. X Chu, R Buyya, Service Oriented Sensor Web, in Sensor Networks and
Configuration: Fundamentals, Standards, Platforms, and Applications, ed. by
Mahalik NP Springer-Verlag, Berlin Heidelberg, pp. 51–74 (2007)

34. ETSI TS 102 690 V1.1.1, Machine-to-Machine communications (M2M);
Functional architecture. (2011)

35. Z Shelby, K Hartke, C Bormann, B Frank, Constrained application protocol
(CoAP). IETF Internet-Draft draft-ietf-core-coap-08, work in progress http://
tools.ietf.org/html/draft-ietf-core-coap-08 (2011)

36. V Tsiatsis, A Gluhak, T Bauge, F Montagut, J Bernat, M Bauer, C Villalonga, P
Barnaghi, S Krco, The SENSEI Real World Internet Architecture, in Towards
the Future Internet - Emerging Trends from European Research, ed. by

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 18 of 19

http://www.vitro-fp7.eu
http://tools.ietf.org/html/draft-ietf-core-coap-08
http://tools.ietf.org/html/draft-ietf-core-coap-08

Tselentis G, Galis A, Gavras A, Krco S, Lotz V, Simperl E, Stiller B, Zahariadis T
(IOS Press, 2010), pp. 247–256

37. D Wisely, H Aghvami, S Gwyn, Th Zahariadis, J Manner, V Gazis, N Houssos,
N Alonistioti, Transparent IP radio access for next generation mobile
networks. IEEE Wirel Commun Mag. 10(4), 26–35 (2003). doi:10.1109/
MWC.2003.1224976

38. Winter T, Thubert P (eds.), RPL: IPv6 Routing Protocol for Low power and
Lossy Networks (IETF Internet-Draft draft-ietf-roll-rpl-19, work in progress,
2011) http://tools.ietf.org/html/draft-ietf-roll-rpl-19

39. Th Zahariadis, H Leligou, P Trakadas, S Voliotis, Trust management in
wireless sensor networks. Eur Trans Telecommun. 21(4), 386–395 (2010)

doi:10.1186/1687-1499-2012-135
Cite this article as: Sarakis et al.: A framework for service provisioning in
virtual sensor networks. EURASIP Journal on Wireless Communications and
Networking 2012 2012:135.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Sarakis et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:135
http://jwcn.eurasipjournals.com/content/2012/1/135

Page 19 of 19

http://tools.ietf.org/html/draft-ietf-roll-rpl-19
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Related study
	3. System design principles and architecture
	3.1. Design principles
	3.2. General architecture
	3.3. Service provisioning

	4. Wireless sensor islands
	4.1. Gateway architecture
	4.2. Sensor node architecture

	5. Interfaces between system components
	5.1. Interface between application and DVNS
	5.2. Interface between DVNS and VSN manager
	5.3. Interface between application and VSN manager
	5.4. Interface between DVNS and VGW
	5.5. Interface between VSN manager and VGW
	5.6. Interface between VGW and sensor node

	6. Service registration, service negotiation, and session establishment
	7. Conclusions and future study
	Acknowledgements
	Author details
	Competing interests
	References

