8,177 research outputs found

    Development of the Universe and New Cosmology

    Full text link
    Cosmology is undergoing an explosive period of activity, fueled both by new, accurate astrophysical data and by innovative theoretical developments. Cosmological parameters such as the total density of the Universe and the rate of cosmological expansion are being precisely measured for the first time, and a consistent standard picture of the Universe is beginning to emerge. Recent developments in cosmology give rise the intriguing possibility that all structures in the Universe, from superclusters to planets, had a quantum-mechanical origin in its earliest moments. Furthermore, these ideas are not idle theorizing, but predictive, and subject to meaningful experimental test. We review the concordance model of the development of the Universe, as well as evidence for the observational revolution that this field is going through. This already provides us with important information on particle physics, which is inaccessible to accelerators.Comment: 9 pages; The German translation of this mini review can be uploaded from http://www.cc.ethz.ch/bulletin/ New references are added with respective minor changes of tex

    Monoclinic and triclinic phases in higher-order Devonshire theory

    Full text link
    Devonshire theory provides a successful phenomenological description of many cubic perovskite ferroelectrics such as BaTiO3 via a sixth-order expansion of the free energy in the polar order parameter. However, the recent discovery of a novel monoclinic ferroelectric phase in the PZT system by Noheda et al. (Appl. Phys. Lett. 74, 2059 (1999)) poses a challenge to this theory. Here, we confirm that the sixth-order Devonshire theory cannot support a monoclinic phase, and consider extensions of the theory to higher orders. We show that an eighth-order theory allows for three kinds of equilibrium phases in which the polarization is confined not to a symmetry axis but to a symmetry plane. One of these phases provides a natural description of the newly observed monoclinic phase. Moreover, the theory makes testable predictions about the nature of the phase boundaries between monoclinic, tetragonal, and rhombohedral phases. A ferroelectric phase of the lowest (triclinic) symmetry type, in which the polarization is not constrained by symmetry, does not emerge until the Devonshire theory is carried to twelfth order. A topological analysis of the critical points of the free-energy surface facilitates the discussion of the phase transition sequences.Comment: 10 pages, with 5 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/dv_pzt/index.htm

    Reconciliation of experimental and theoretical electric tensor polarizabilities of the cesium ground state

    Get PDF
    We present a new theoretical analysis of the strongly suppressed F- and M-dependent Stark shifts of the Cs ground state hyperfine structure. Our treatment uses third order perturbation theory including off-diagonal hyperfine interactions not considered in earlier treatments. A numerical evaluation of the perturbation sum using bound states up to n=200 yields ground state tensor polarizabilities which are in good agreement with experimental values, thereby bridging the 40-year-old gap between experiments and theory. We have further found that the tensor polarizabilities of the two ground state hyperfine manifolds have opposite signs, in disagreement with an earlier derivation. This sign error has a direct implication for the precise evaluation of the blackbody radiation shift in primary frequency standards.Comment: 7 pages, 2 figures, accepted for publication in Europhysics Letter

    Rb*He_n exciplexes in solid 4_He

    Get PDF
    We report the observation of emission spectra from Rb*He_n exciplexes in solid 4He. Two different excitation channels were experimentally identified, viz., exciplex formation via laser excitation to the atomic 5P3/2 and to the 5P1/2 levels. While the former channel was observed before in liquid helium, on helium nanodroplets and in helium gas by different groups, the latter creation mechanism occurs only in solid helium or in gaseous helium above 10 Kelvin. The experimental results are compared to theoretical predictions based on the extension of a model, used earlier by us for the description of Cs*He_n exciplexes. We also report the first observation of fluorescence from atomic rubidium in solid helium, and discuss striking differences between the spectroscopic feature of Rb-He and Cs-He systems.Comment: 8 pages, 8 figure

    Spectroscopy of Rb2_{2} dimers in solid 4^{4}He

    Get PDF
    We present experimental and theoretical studies of the absorption, emission and photodissociation spectra of Rb2_{2} molecules in solid helium. We have identified 11 absorption bands of Rb2_{2}. All laser-excited molecular states are quenched by the interaction with the He matrix. The quenching results in efficient population of a metastable (1)3Πu^{3}\Pi_{u} state, which emits fluorescence at 1042 nm. In order to explain the fluorescence at the forbidden transition and its time dependence we propose a new molecular exciplex Rb2(3Πu)_{2}(^{3}\Pi_{u})He2_{2}. We have also found evidence for the formation of diatomic bubble states following photodissociation of Rb2_{2}

    Electron transport in Coulomb- and tunnel-coupled one-dimensional systems

    Full text link
    We develop a linear theory of electron transport for a system of two identical quantum wires in a wide range of the wire length L, unifying both the ballistic and diffusive transport regimes. The microscopic model, involving the interaction of electrons with each other and with bulk acoustical phonons allows a reduction of the quantum kinetic equation to a set of coupled equations for the local chemical potentials for forward- and backward-moving electrons in the wires. As an application of the general solution of these equations, we consider different kinds of electrical contacts to the double-wire system and calculate the direct resistance, the transresistance, in the presence of tunneling and Coulomb drag, and the tunneling resistance. If L is smaller than the backscattering length l_P, both the tunneling and the drag lead to a negative transresistance, while in the diffusive regime (L >>l_P) the tunneling opposes the drag and leads to a positive transresistance. If L is smaller than the phase-breaking length, the tunneling leads to interference oscillations of the resistances that are damped exponentially with L.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figure

    Noncommutative Common Cause Principles in Algebraic Quantum Field Theory

    Full text link
    States in algebraic quantum field theory "typically" establish correlation between spacelike separated events. Reichenbach's Common Cause Principle, generalized to the quantum field theoretical setting, offers an apt tool to causally account for these superluminal correlations. In the paper we motivate first why commutativity between the common cause and the correlating events should be abandoned in the definition of the common cause. Then we show that the Noncommutative Weak Common Cause Principle holds in algebraic quantum field theory with locally finite degrees of freedom. Namely, for any pair of projections A, B supported in spacelike separated regions V_A and V_B, respectively, there is a local projection C not necessarily commuting with A and B such that C is supported within the union of the backward light cones of V_A and V_B and the set {C, non-C} screens off the correlation between A and B
    • …
    corecore