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Reconciliation of experimental and theoretical
electric tensor polarizabilities of the cesium ground state

S. Ulzega(∗), A. Hofer, P. Moroshkin and A. Weis

Physics Department, University of Fribourg
Chemin du Musée 3, 1700 Fribourg, Switzerland

Abstract. – We present a new theoretical analysis of the strongly suppressed F - and M -
dependent Stark shifts of the Cs ground-state hyperfine structure. Our treatment uses third-
order perturbation theory including off-diagonal hyperfine interactions not considered in earlier
treatments. A numerical evaluation of the perturbation sum using bound states up to n = 200
yields ground-state tensor polarizabilities α2(6S1/2, F ) which are in good agreement with ex-
perimental values, thereby bridging the 40-year-old gap between experiments and theory. We
have further found that the tensor polarizabilities of the two ground-state hyperfine manifolds
have opposite signs, in disagreement with an earlier derivation. This sign error has a direct
implication for the precise evaluation of the blackbody radiation shift in primary frequency
standards.

Introduction. – Since its discovery, the Stark effect, i.e., the interaction of an atom with
an external electric field E, has played an important role in the spectroscopic investigation of
atomic structure. Because of parity conservation, the Stark effect arises only in second-order
perturbation theory for atoms with non-degenerate orbital angular-momentum states. The
energy shift ΔE(γ) of a magnetic sublevel |γ〉 = |nLJ , F,M〉 of the hyperfine structure is
conventionally parametrized in terms of a polarizability α(γ) as

ΔE(γ) = −1
2

α(γ) E
2 . (1)

In second-order perturbation theory the polarizability can be decomposed [1] into a scalar
polarizability, α

(2)
0 , which leads to an F - and M -independent level shift, and a tensor polariz-

ability, α
(2)
2 , which yields F - and M -dependent energy shifts. Because of rotational symmetry,

the tensor polarizability vanishes for the spherical nS1/2 and nP1/2 states in the alkalis. As
a consequence, the second-order Stark effect in the alkali ground state does not affect its hy-
perfine splitting, nor does it lift the Zeeman degeneracy of a given hyperfine level. However,
Haun and Zacharias observed already in 1957 [2] that a static electric field does induce a
quadratic Stark shift of the hyperfine transition frequency (F -dependent Stark effect), and in
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1964, Lipworth and Sandars [3] demonstrated that a static electric field also lifts the Zeeman
degeneracy within the F = 4 sublevel manifold of the cesium ground state (an |M |-dependent
effect). Improved measurements were performed later by Carrico et al. [4] and Gould et al. [5],
and were recently confirmed by our own measurements [6–8]. In 1967, Sandars [9] showed that
the F - and |M |-dependence of the Stark effect can be explained when the perturbation theory
is extended to third order after including the hyperfine interaction. His theoretical expressions
for the third-order tensor polarizabilties α

(3)
2 were evaluated numerically in [3] and [5] under

simplifying assumptions. This yielded (absolute) values which were systematically larger than
the experimental values for the five investigated alkali isotopes [5]. It is worth noting that in
cesium the level shifts due to α

(3)
2 are almost seven orders of magnitude smaller than the com-

mon shift of the ground-state levels due to the second-order scalar polarizability α
(2)
0 . While

the scalar Stark shift is understood at a level of (1–2) · 10−3 [10–12], there has so far been
no satisfactory theoretical description of the tensor polarizabilities, i.e., of the |M |-dependent
alterations of the scalar effect.

In this paper we extend the previous theoretical treatment of the third-order effects by
including both diagonal and off-diagonal hyperfine interactions in the perturbation expansion.
The numerical evaluation of the perturbation sum then yields a value of the Cs ground state
tensor polarizability α2(6S1/2, F = 4) which is in very good agreement with the experimental
results [4–8], thereby bridging the 40-year-old gap [8] between experiments and theory. We
have also identified an error in Sandars’ results [9] concerning the relative sign of the tensor
polarizabilities of the two ground-state hyperfine levels. We discuss the relevance of this sign
error for the determination of the blackbody radiation shift of primary frequency standards
from measurements of the static Stark shift of the Cs clock frequency.

Theoretical model. – As shown by Sandars [9], the F - and M -dependent Stark shifts
can be explained by a third-order perturbation treatment, in which the Stark interaction,
HSt = −�d ·�E, and the dipole-dipole (Hd

hf) and electric-quadrupole (Hq
hf) hyperfine interactions,

are treated on an equal footing. The contributions of HSt and Hhf = Hd
hf+Hq

hf can be expressed
in terms of irreducible tensor operators

HSt = |e| rC(1) · E(1), (2)

Hd
hf =

(
al,j

{
L(1) −

√
10

[
C(2) × S(1)

](1)} + asS
(1)

)
· I(1) , (3)

Hq
hf = bQC(2) · [I(1) × I(1)

](2)
, (4)

where L, S, and I are vector operators associated with the orbital angular momentum, the
electronic spin, and the nuclear spin, respectively, and where the C(k) are normalized spherical
harmonics of rank k. The first and second terms of eq. (3) represent the magnetic interaction of
the nuclear magnetic moment with the orbital and electron spin dipole moments, respectively
(dipole-dipole interactions), while the third term represents the Fermi contact interaction and
eq. (4) is the electric-quadrupole interaction. The corresponding coupling constants are al,j ,
as, and bQ. The contact interaction term has non-zero matrix elements between S-states
(L = 0) only, while the first two terms of eq. (3) apply to states with L > 0. The electric-
quadrupole term of eq. (4) requires L > 1 and J > 1, and for Cs nP3/2 states its matrix
elements are two orders of magnitude smaller than all other contributions.

The third-order energy perturbation of the sublevel |α〉 = |6S1/2, F,M〉 is given by

ΔE(3)(α) =
∑

β �=α,γ �=α

〈α|W |β〉 〈β|W |γ〉 〈γ|W |α〉
(Eα − Eβ)(Eα − Eγ)

− 〈α|W |α〉
∑
β �=α

|〈β|W |α〉|2
(Eα − Eβ)2

, (5)
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h Fig. 1 – Contributions of diagonal (A and B) and off-diagonal (1–5) hyperfine matrix elements
to the third-order Stark effect. Dotted/solid lines represent the Stark and hyperfine interactions,
respectively. The relative contributions of the diagrams are given in the text.

where Eβ and Eγ are the unperturbed state energies. Of all the terms obtained by substituting
W = HSt + Hhf into eq. (5) only those proportional to E

2 give nonzero contributions to the
Stark interaction, and the sums have to be carried out over all states according to the selection
rules imposed by the operators.

We first address the second term of eq. (5), whose only non-vanishing contribution is

−〈α|Hhf |α〉
∑
β �=α

|〈β|HSt |α〉|2
(Eα − Eβ)2

≡ −Ehf(α)
∑
β �=α

|〈β|HSt |α〉|2
(Eα − Eβ)2

, (6)

where |β〉 = |nPj , f,m〉. Diagram A of fig. 1 shows a graphical representation of this term in
which the Fermi ground-state contact interaction appears as a multiplicative factor, making
this contribution F -dependent. Comparing the sum in eq. (6) to the expression

ΔE(2)(α) =
∑
β �=α

|〈β|HSt |α〉|2
Eα − Eβ

, (7)

for the second-order scalar Stark effect, one sees that the F -dependent third-order shift is
suppressed by a factor on the order of Ehf(6S)/(E6P −E6S) ≈ 10−5. Following the definition
of eq. (1) the contribution of eq. (6) can be parametrized in terms of an F -dependent third-
order scalar polarizability α

(3)
0 (6S1/2, F ). This F -dependent term gives the main contribution

to the Stark shift of the hyperfine transition frequency.
We next address the first term of eq. (5). The nonvanishing contributions involving diag-

onal matrix elements of Hhf are given by

∑
β �=α

〈β|Hhf |β〉 |〈β|HSt |α〉|2
(Eα − Eβ)2

≡
∑
β �=α

Ehf(β)
|〈β|HSt |α〉|2
(Eα − Eβ)2

, (8)

where |β〉 = |nPj , f,m〉. They are represented by diagram B of fig. 1 and are suppressed
by a factor on the order of Ehf(6P )/(E6P − E6S) ≈ 10−7 with respect to the second-order
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scalar shifts. The electric-field–dependent factor of eq. (8) has only a rank k = 0 (scalar)
contribution, while the dipole-dipole (eq. (3)) and the electric-quadrupole (eq. (4)) parts of
the Hhf factor in eq. (8) have the rotational symmetries of k = 0, 2 and k = 2 tensors,
respectively. The contraction of the hyperfine and the Stark interactions in eq. (8) thus yields
both scalar and second-rank tensor contributions. The scalar part of eq. (8) has the same
F -dependence [8] as α

(3)
0 (F ), and gives a correction to the latter on the order of 1%, while the

second-rank tensor part has an F - and M -dependence, which can be parametrized in terms
of a third-order tensor polarizability α

(3)
2 (6S1/2, F ).

The total third-order polarizability can thus be written as

α(3)(6S1/2, F,M) = α
(3)
0 (6S1/2, F ) + α

(3)
2 (6S1/2, F )

3M2−F (F +1)
2I(2I + 1)

f(θ) , (9)

where the dependence on the angle θ between the electric field and the quantization axis is
given by f(θ) = 3 cos2 θ−1. Equations (6), (8) can be reduced by applying the Wigner-Eckart
theorem and angular-momentum decoupling rules. For cesium (I = 7/2) the explicit F - and
M -dependences of the third-order polarizabilities for θ = 0 are

α(3)(F = 4,M) = a0 + (a1 + a2)
3M2 − 20

28
, (10a)

α(3)(F = 3,M) = −9
7

a0 +
(
−a1 +

5
3

a2

)
3M2 − 12

28
. (10b)

The scalar part can be expressed in terms of radial integrals

a0 =
7
54

∑
n

[CnP1/2

(
3A6S1/2 + AnP1/2

)
+ 2CnP3/2

(
3A6S1/2 − 5AnP3/2

)]
, (11)

where A6S1/2 and AnPj
are the hyperfine coupling constants and where

CnPj
=

e2
∣∣R6S,nPj

∣∣2(
E6S1/2 − EnPj

)2 . (12)

R6S,nPj
is the radial integral between the ground state and the excited |nPj〉 state. The Fermi-

contact interaction (proportional to A6S1/2) provides the dominant contribution to a0 which,
as mentioned, also has a small contribution (proportional to AnPj

) from the scalar part of the
magnetic-dipole interactions. Equations (6) and (8) can be expressed in a similar way as

a1 = − 7
54

∑
n

[(
2AnP1/2CnP1/2 − 5AnP3/2CnP3/2

)
+

(
2AnP1/2CnP1/2 + AnP3/2CnP3/2

)]
, (13)

where we have explicitely separated the contribution of the orbital part of the interaction
(first term) from that of the spin dipolar part (second term), and

a2 =
1
9

∑
n

BnP3/2CnP3/2 , (14)

where BnP3/2 is the quadrupole hyperfine coupling constant.
Equations (10) closely resemble the expressions derived by Sandars [9], except for the

negative sign of the a1 term in eq. (10b) which is positive in Sandars’ work. To our knowl-
edge, this sign cannot be derived from any prior experiment. We have recently confirmed
experimentally [7] that the tensor polarizabilities of the F = 3 and F = 4 states have indeed
opposite signs as predicted by our calculation. This sign error has remained unnoticed in the
literature for almost 40 years and we will come back to its relevance for atomic clocks below.
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Fig. 2 – The third-order tensor polarizability of the F = 4 Cs ground state. The filled squares (�)
represent experimental values of Carrico et al. [4] (a), Gould et al. [5] (b), Ospelkaus et al. [6] (c)
and Ulzega et al. [7] (d). The empty square (�) (e) represents their weighted average. The dots (•)
represent the theoretical value from [5] (f), and our re-evaluations (f ′, f ′′) discussed in the text. The
dashed horizontal line is the result of the present work with its uncertainty (shaded band).

Numerical evaluation of the tensor polarizability. – The tensor polarizability (a1-term)
of the F = 4 state of cesium was evaluated in [5] by considering only diagonal matrix elements
of Hhf for the 6S1/2 and the 6PJ states. The contribution of the orbital magnetic-dipole hy-
perfine interaction (first term in eq. (13)) was neglected, as well as the spin-orbit splitting in
the denominators of eq. (5). The authors assumed furthermore that A6P1/2/A6P3/2 = 5, valid
for one-electron atoms, while for Cs the corresponding ratio of experimental values is 5.8.
Under the latter two approximations one can factor the second-order scalar polarizability α

(2)
0

out of the expression for the tensor polarizability. Those simplifying assumptions yielded the
α

(3)
2 (F = 4) value represented as point (f) in fig. 2, in disagreement with the experimental re-

sults. We have re-evaluated the result by including the orbital part of the hyperfine interaction
and then rescaling the value of [5] by using the most recent experimental value of α

(2)
0 [10]. This

yields the value (f ′) in fig. 2, thus increasing the gap between theory and experiments. In a sec-
ond, more precise, calculation we dropped all the simplifying assumptions mentioned above [8],
still keeping diagonal matrix elements only, and numerically evaluated eqs. (13), (14) by using
recent experimental values [13] of the reduced dipole matrix elements 〈6S1/2 ‖ d ‖ 6Pj〉. As a
result, the discrepancy with experiments becomes even larger (point (f ′′) in fig. 2), and does
not change significantly when extending the perturbation sum to nPJ states with n > 6.

Off-diagonal hyperfine interaction. – All calculations described above considered only
diagonal hyperfine matrix elements. However, the first term in eq. (5) allows also off-diagonal
hyperfine terms. Figure 1 gives a schematic overview of all possible off-diagonal configurations
compatible with the hyperfine and Stark operator selection rules. It is interesting to note that
some off-diagonal hyperfine matrix elements (diagrams 1 and 2, fig. 1) were already considered
by Feichtner et al. [14] in their calculation of the clock transition Stark shift, but for unknown
reasons such terms were never considered in the tensor polarizability calculation.

5



ht
tp

://
do

c.
re

ro
.c

h

The contact interaction selection rule ΔL = 0 admits only off-diagonal matrix elements
between the ground state and higher-lying S1/2 states (diagram 1, fig. 1). The orbital and spin
dipolar magnetic interactions also obey ΔL = 0 and have nonvanishing off-diagonal matrix
elements of the form 〈β1|Hhf |β2〉, where |βi〉 = |niPji

〉 (diagrams 2, 3 and 4). Due to the
second-rank tensor character of C(2), the spin dipolar term also couples states with ΔL = ±2
and can thus contribute to the third-order Stark effect with off-diagonal matrix elements
between the ground state and D3/2 states (diagram 5). We have used the Schrödinger equation
with a statistical Thomas-Fermi model potential to calculate the relevant wave functions of the
free Cs atom. Corrections for the dipolar and quadrupolar core polarization as well as spin-
orbit interaction with a relativistic correction factor following [15] were included. The electric-
dipole and hyperfine matrix elements were calculated using the Schrödinger wave functions
for all matrix elements for which no precise values could be found in the literature. In this
way we evaluated all diagrams in fig. 1 by running the summation indices m and n up to 200.

Relative contributions and numerical results. – Diagrams A and 1 of fig. 1 yield only
F -dependent energy shifts, and thus do not contribute to the tensor polarizability. All other
diagrams produce F - and M -dependent effects. The relative importance with which diagrams
B and 2–5 contribute to α

(3)
2 is +145, +99, −40, −3, and −101%, respectively. A numer-

ical evaluation of the perturbation sum with all diagonal and off-diagonal matrix elements
mentioned above gives

α
(3)
2 (F = 4) = −3.72(25) × 10−2 Hz/(kV/cm)2 , (15)

for the tensor polarizability, in which the contribution of a2 is 2 × 10−5 Hz/(kV/cm)2. This
result is shown as a dashed line in fig. 2 together with previous theoretical and experimental
results. We estimate the uncertainty of our calculated value to be 7%, based on the precision
(2–8%) with which our Schrödinger solutions can reproduce measured dipole matrix elements
and hyperfine splittings, and considering that some (more precise) experimental values were
included in the calculations, whenever they were available. We have also verified by explicit
calculations using continuum wave functions that continuum states contribute only at a level
of 10−4 to the diagrams relevant for α

(3)
2 (∼ a1), while it was recently shown [16,17] that the

continuum contributes significantly (≈ 10%) to diagram 1, which dominates the BBR shift
via the α

(3)
0 (∼ a0) term in eq. (16) [18].

The corrected sign of the a1-terms has an important implication for frequency standards.
From eqs. (10) the static Stark shift of the Cs clock frequency is given by

Δν00 = Δν
(
6S1/2, 4, 0

) − Δν
(
6S1/2, 3, 0

)
= −1

2

[
16
7

a0 − 4
7

a1 f (θ)
]

E
2 . (16)

One of the leading systematic shifts of the clock transition frequency is due to the interaction of
the atoms with the dynamic Stark interaction induced by the blackbody radiation (BBR) field.
This shift can be calculated from eq. (16) by averaging E

2 over the Planck spectrum [16,17,19].
Because of the isotropy of the blackbody radiation the θ-dependence in eq. (16) vanishes, so
that the BBR shift is determined by the scalar part a0 only. The BBR shift coefficient can be
deduced from the measured shift of the clock transition frequency induced by a static electric
field. For this one has to know the value of the a1-term in eq. (16) which is affected by the
sign error, the coefficient of a1 being − 1

7 when derived from Sandars’ formula and − 4
7 from

our calculation. The most precise measurement of the static Stark shift was performed by
Simon et al. [20] from which the authors extracted − 8

7a0 = −2.273(4) kHz/(kV/cm)2, while
our evaluation with the correct sign yields −8

7a0 = −2.281(4) kHz/(kV/cm)2. The correction
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of the sign error thus changes the BBR shift rate by a value which is twice as large as the
reported experimental uncertainty.

Conclusions. – We have extended a previous treatment of the Stark interaction by
including off-diagonal hyperfine matrix elements in the third-order perturbation expansion.
Our calculation of the tensor polarizability yields a good agreement with all experimental
data, thereby removing a 40-year-old discrepancy. A sign error identified in Sandars’ model
leads to a new expression for the static Stark shift of the hyperfine transition frequency which
requires Cs primary frequency standards to be corrected at a level of 6×10−17, which is below
their present accuracy.
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