53 research outputs found

    Measurements of hydrocarbon emissions from a boreal fen using the REA technique

    No full text
    International audienceFluxes of biogenic volatile organic compounds (VOC) and methane were measured above a boreal fen. Vegetation on the fen is dominated by Sphagnum mosses and sedges. A relaxed eddy accumulation (REA) system with dynamic deadband was designed and constructed for the measurements. Methane, C2-C6 hydrocarbons and some halogenated hydrocarbons were analysed from the samples by gas chromatographs equipped with FID and ECD. A significant flux of isoprene and methane was detected during the growing seasons. Isoprene emission was found to follow the common isoprene emission algorithm. Average standard emission potential of isoprene was 680 ? g m-2h-1. Fluxes of other non-methane hydrocarbons were below detection limit

    Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    No full text
    International audienceBoundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 ?g m?2 h?1, ?-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene

    Intercomparison of fast response commercial gas analysers for nitrous oxide flux measurements under field conditions

    Get PDF
    Four gas analysers capable of measuring nitrous oxide (N2O) concentration at a response time necessary for eddy covariance flux measurements were operated from spring until winter 2011 over a field cultivated with reed canary grass (RCG, Phalaris arundinacea, L.), a perennial bioenergy crop in eastern Finland. The instruments were TGA100A (Campbell Scientific Inc.), CW-TILDAS-CS (Aerodyne Research Inc.), N2O / CO-23d (Los Gatos Research Inc.) and QC-TILDAS-76-CS (Aerodyne Research Inc.). The period with high emissions, lasting for about 2 weeks after fertilization in late May, was characterized by an up to 2 orders of magnitude higher emission, whereas during the rest of the campaign the N2O fluxes were small, from 0.01 to 1 nmol m−2 s−1. Two instruments, CW-TILDAS-CS and N2O / CO-23d, determined the N2O exchange with minor systematic difference throughout the campaign, when operated simultaneously. TGA100A produced the cumulatively highest N2O estimates (with 29% higher values during the period when all instruments were operational). QC-TILDAS-76-CS obtained 36% lower fluxes than CW-TILDAS-CS during the first period, including the emission episode, whereas the correspondence with other instruments during the rest of the campaign was good. The reasons for systematic differences were not identified, suggesting further need for detailed evaluation of instrument performance under field conditions with emphasis on stability, calibration and any other factors that can systematically affect the accuracy of flux measurements. The instrument CW-TILDAS-CS was characterized by the lowest noise level (with a standard deviation of around 0.12 ppb at 10 Hz sampling rate) as compared to N2O / CO-23d and QC-TILDAS-76-CS (around 0.50 ppb) and TGA100A (around 2 ppb). We identified that for all instruments except CW-TILDAS-CS the random error due to instrumental noise was an important source of uncertainty at the 30 min averaging level and the total stochastic error was frequently of the same magnitude as the fluxes when N2O exchange was small at the measurement site. Both instruments based on continuous-wave quantum cascade laser, CW-TILDAS-CS and N2O / CO-23d, were able to determine the same sample of low N2O fluxes with a high mutual coefficient of determination at the 30 min averaging level and with minor systematic difference over the observation period of several months. This enables us to conclude that the new-generation instrumentation is capable of measuring small N2O exchange with high precision and accuracy at sites with low fluxes.Peer reviewe

    Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland

    Get PDF
    We measured volatile organic compounds (VOCs), carbon dioxide (CO2) and carbon monoxide (CO) at an urban background site near the city centre of Helsinki, Finland, northern Europe. The VOC and CO2 measurements were obtained between January 2013 and September 2014 whereas for CO a shorter measurement campaign in April-May 2014 was conducted. Both anthropogenic and biogenic sources were identified for VOCs in the study. Strong correlations between VOC fluxes and CO fluxes and traffic rates indicated anthropogenic source of many VOCs. The VOC with the highest emission rate to the atmosphere was methanol, which originated mostly from traffic and other anthropogenic sources. The traffic was also a major source for aromatic compounds in all seasons whereas isoprene was mostly emitted from biogenic sources during summer. Some amount of traffic-related isoprene emissions were detected during other seasons but this might have also been an instrumental contamination from cycloalkane products. Generally, the observed VOC fluxes were found to be small in comparison with previous urban VOC flux studies. However, the differences were probably caused by lower anthropogenic activities as the CO2 fluxes were also relatively small at the site.Peer reviewe

    Studying the spatial variability of methane flux with five eddy covariance towers of varying height

    Get PDF
    In this study, the spatial representativeness of eddy covariance (EC) methane (CH4) measurements was examined by comparing parallel CH4 fluxes from three short (6 m) towers separated by a few kilometres and from two higher levels (20 m and 60 m) at one location. The measurement campaign was held on an intensively managed grassland on peat soil in the Netherlands. The land use and land cover types are to a large degree homogeneous in the area. The CH4 fluxes exhibited significant variability between the sites on 30-min scale. The spatial coefficient of variation (CVspa) between the three short towers was 56% and it was of similar magnitude as the temporal variability, unlike for the other fluxes (friction velocity, sensible heat flux) for which the temporal variability was considerably larger than the spatial variability. The CVspa decreased with temporal averaging, although less than what could be expected for a purely random process View the MathML source(1/N), and it was 14% for 26-day means of CH4 flux. This reflects the underlying heterogeneity of CH4 flux in the studied landscape at spatial scales ranging from 1 ha (flux footprint) to 10 km2 (area bounded by the short towers). This heterogeneity should be taken into account when interpreting and comparing EC measurements. On an annual scale, the flux spatial variability contributed up to 50% of the uncertainty in CH4 emissions. It was further tested whether EC flux measurements at higher levels could be used to acquire a more accurate estimate of the spatially integrated CH4 emissions. Contrarily to what was expected, flux intensity was found to both increase and decrease depending on measurement height. Using footprint modelling, 56% of the variation between 6 m and 60 m CH4 fluxes was attributed to emissions from local anthropogenic hotspots (farms). Furthermore, morning hours proved to be demanding for the tall tower EC where fluxes at 60 m were up to four-fold those at lower heights. These differences were connected with the onset of convective mixing during the morning period

    Evaluating the performance of commonly used gas analysers for methane eddy covariance flux measurements: the InGOS inter-comparison field experiment

    Get PDF
    The performance of eight fast-response methane (CH4) gas analysers suitable for eddy covariance flux measurements were tested at a grassland site near the Cabauw tall tower (Netherlands) during June 2012. The instruments were positioned close to each other in order to minimise the effect of varying turbulent conditions. The moderate CH4 fluxes observed at the location, of the order of 25 nmol m-2 s-1, provided a suitable signal for testing the instruments' performance. Generally, all analysers tested were able to quantify the concentration fluctuations at the frequency range relevant for turbulent exchange and were able to deliver high-quality data. The tested cavity ringdown spectrometer (CRDS) instruments from Picarro, models G2311-f and G1301-f, were superior to other CH4 analysers with respect to instrumental noise. As an open-path instrument susceptible to the effects of rain, the LI-COR LI-7700 achieved lower data coverage and also required larger density corrections; however, the system is especially useful for remote sites that are restricted in power availability. In this study the open-path LI-7700 results were compromised due to a data acquisition problem in our data-logging setup. Some of the older closed-path analysers tested do not measure H2O concentrations alongside CH4 (i.e. FMA1 and DLT-100 by Los Gatos Research) and this complicates data processing since the required corrections for dilution and spectroscopic interactions have to be based on external information. To overcome this issue, we used H2O mole fractions measured by other gas analysers, adjusted them with different methods and then applied them to correct the CH4 fluxes. Following this procedure we estimated a bias of the order of 0.1 g (CH4) m-2 (8% of the measured mean flux) in the processed and corrected CH4 fluxes on a monthly scale due to missing H2O concentration measurements. Finally, cumulative CH4 fluxes over 14 days from three closed-path gas analysers, G2311-f (Picarro Inc.), FGGA (Los Gatos Research) and FMA2 (Los Gatos Research), which were measuring H2O concentrations in addition to CH4, agreed within 3% (355–367 mg (CH4) m-2) and were not clearly different from each other, whereas the other instruments derived total fluxes which showed small but distinct differences (±10%, 330–399 mg (CH4) m-2)
    • …
    corecore