4,240 research outputs found

    Phonon Band Structure and Thermal Transport Correlation in a Layered Diatomic Crystal

    Full text link
    To elucidate the relationship between a crystal's structure, its thermal conductivity, and its phonon dispersion characteristics, an analysis is conducted on layered diatomic Lennard-Jones crystals with various mass ratios. Lattice dynamics theory and molecular dynamics simulations are used to predict the phonon dispersion curves and the thermal conductivity. The layered structure generates directionally dependent thermal conductivities lower than those predicted by density trends alone. The dispersion characteristics are quantified using a set of novel band diagram metrics, which are used to assess the contributions of acoustic phonons and optical phonons to the thermal conductivity. The thermal conductivity increases as the extent of the acoustic modes increases, and decreases as the extent of the stop bands increases. The sensitivity of the thermal conductivity to the band diagram metrics is highest at low temperatures, where there is less anharmonic scattering, indicating that dispersion plays a more prominent role in thermal transport in that regime. We propose that the dispersion metrics (i) provide an indirect measure of the relative contributions of dispersion and anharmonic scattering to the thermal transport, and (ii) uncouple the standard thermal conductivity structure-property relation to that of structure-dispersion and dispersion-property relations, providing opportunities for better understanding of the underlying physical mechanisms and a potential tool for material design.Comment: 30 pages, 10 figure

    Chandra Measurements of a Complete Sample of X-ray Luminous Galaxy Clusters: The Luminosity-Mass Relation

    Get PDF
    We present the results of work involving a statistically complete sample of 34 galaxy clusters, in the redshift range 0.15≤\lez≤\le0.3 observed with ChandraChandra. We investigate the luminosity-mass (LMLM) relation for the cluster sample, with the masses obtained via a full hydrostatic mass analysis. We utilise a method to fully account for selection biases when modeling the LMLM relation, and find that the LMLM relation is significantly different than the relation modelled when not account for selection effects. We find that the luminosity of our clusters is 2.2±\pm0.4 times higher (when accounting for selection effects) than the average for a given mass, its mass is 30% lower than the population average for a given luminosity. Equivalently, using the LMLM relation measured from this sample without correcting for selection biases would lead to the underestimation by 40% of the average mass of a cluster with a given luminosity. Comparing the hydrostatic masses to mass estimates determined from the YXY_{X} parameter, we find that they are entirely consistent, irrespective of the dynamical state of the cluster.Comment: 31 pages, 43 figures, accepted for publication in MNRA

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    A two-species continuum model for aeolian sand ripples

    Get PDF
    We formulate a continuum model for aeolian sand ripples consisting of two species of grains: a lower layer of relatively immobile clusters, with an upper layer of highly mobile grains moving on top. We predict analytically the ripple wavelength, initial ripple growth rate and threshold saltation flux for ripple formation. Numerical simulations show the evolution of realistic ripple profiles from initial surface roughness via ripple growth and merger.Comment: 9 pages, 3 figure

    Phonon Transport Across a Vacuum Gap

    Get PDF
    Phonon transport across a silicon/vacuum-gap/silicon structure is modeled using lattice dynamics calculations and Landauer theory. The phonons transmit thermal energy across the vacuum gap via atomic interactions between the leads. Because the incident phonons do not encounter a classically impenetrable potential barrier, this mechanism is not a tunneling phenomenon. While some incident phonons transmit across the vacuum gap and remain in their original mode, many are annihilated and excite different modes. We show that the heat flux due to phonon transport can be 4 orders of magnitude larger than that due to photon transport predicted from near-field radiation theory

    Accurate calibration of test mass displacement in the LIGO interferometers

    Full text link
    We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on Gravitational Wave

    In vitro demonstration of intestinal absorption mechanisms of different sugars using 3d organotypic tissues in a fluidic device

    Get PDF
    Intestinal permeability is crucial in regulating the bioavailability and, consequently, the biological effects of drugs and compounds. However, systematic and quantitative studies of the absorption of molecules are quite limited due to a lack of reliable experimental models able to mimic human in vivo responses. In this work, we present an in vitro perfused model of the small intestinal barrier using a 3D reconstructed intestinal epithelium integrated into a fluid-dynamic bioreactor (MIVO\uae) resembling the physiological stimuli of the intestinal environment. This platform was investigated in both healthy and induced pathological conditions by monitoring the absorption of two non-metabolized sugars, lactulose and mannitol, frequently used as indicators of intestinal barrier dysfunctions. In healthy conditions, an in vivo-like plateau of the percentage of absorbed sugars was reached, where mannitol absorption was much greater than lactulose absorption. Moreover, a model of pathologically altered intestinal permeability was generated by depleting extracellular Ca2+ using a calcium-specific chelator. After calcium depletion, the pattern of sugar passage observed under pathological conditions was reversed only in dynamic conditions in the MIVO\uae chamber, due to the dynamic fluid flow beneath the membrane, but not in static conditions. Therefore, the combination of the MIVO\uae with the EpiIntestinal\u2122 platform can represent a reliable in vitro model to study the passage of molecules across the healthy or pathological small intestinal barrier by discriminating the two main mechanisms of intestinal absorption
    • …
    corecore