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Phonon transport across a vacuum gap
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Phonon transport across a silicon/vacuum-gap/silicon structure is modeled using lattice dynamics calculations
and Landauer theory. The phonons transmit thermal energy across the vacuum gap via atomic interactions
between the leads. Because the incident phonons do not encounter a classically impenetrable potential barrier,
this mechanism is not a tunneling phenomenon. While some incident phonons transmit across the vacuum gap
and remain in their original mode, many are annihilated and excite different modes. We show that the heat flux
due to phonon transport can be 4 orders of magnitude larger than that due to photon transport predicted from
near-field radiation theory.
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I. INTRODUCTION

Although phonons require matter to exist and cannot prop-
agate in bulk vacuum, recent experimental1 and theoretical2,3

papers have shown that phonons can transport across vacuum
gaps a few angstroms wide. Vacuum phonon transport is a
parallel heat-transfer process to near-field radiation, although
the length scales over which the two phenomena dominate
are different. Accounting for it is important in atomic force
microscopy (AFM) and scanning tunneling microscopy (STM)
measurements where an angstrom-sized gap is present between
the microscope tip and the sample. Studying phonon transport
across small gaps is also relevant to predicting the thermal
resistance of rough interfaces4,5 and in accounting for thermal
resistance due to the presence of nanovoids.6

Using ultra-high-vacuum inelastic STM, Altfeder et al.1

studied the thermal coupling between a Pt/Ir STM tip and an
Au(111) film separated by 3 Å of vacuum. They found that
the local electric field of the STM tip couples the thermal
vibrations of the tip and the film. The resulting heat flux was 6
orders of magnitude larger than predictions of near-field radi-
ation theory. Using piezoelectric leads, Prunnila and Meltaus2

theoretically showed that thermal energy can transport across a
vacuum gap via an electric field induced by acoustic phonons.
Making the Debye approximation for the material properties
(i.e., isotropic and linear dispersions, no optical phonons),
they report the angle of incidence and wave-vector magnitude
dependence of the phonon transmission coefficients and the
vacuum thermal conductance for a ZnO/vacuum-gap/ZnO
system. No information is provided about what phonon modes
are excited on the other side of the gap. Mahan3 also showed
that phonons can transport across vacuum gaps up to a few
nanometers wide as a result of polar effects. The mechanism
described by Prunnila and Meltaus2 and Mahan3 does not exist
in nonpolar materials (e.g., silicon) where the lattice strain
induced by phonons does not induce a macroscopic electric
field.

In this paper, we use lattice dynamics calculations to show
that phonons can transport across a vacuum gap via atomic
interactions between the leads. This mechanism will exist in all

materials. Because phonons cannot propagate in bulk vacuum,
it may seem reasonable to call vacuum phonon transport a
tunneling phenomenon. The mechanism we identify, however,
is not a tunneling phenomenon because the phonons that
transmit across the vacuum gap do not encounter a classically
impenetrable potential barrier. Instead, phonons classically
transmit through channels of allowed vibrational states that
only exist for small enough vacuum-gap widths.

This mechanism is supported by the lattice dynamics
modeling paper by Landry and McGaughey7 on germanium
thin films bounded by silicon. They report that phonons with
frequencies that are not permitted in bulk germanium can
pass through germanium films thinner than 2 nm. Tian et al.8

reported similar results for mass-mismatched Lennard-Jones
thin-film systems using the classical molecular-dynamics-
based phonon wave-packet technique. Landry and McGaughey
explained their result by showing that the density of states
of sub-2-nm germanium thin films are not bulklike and take
on vibrational qualities of silicon. Specifically, the maximum
permitted frequency in the film (ωmax

Ge film) is greater than the
maximum permitted frequency in the bulk (ωmax

Ge bulk). Phonons
that pass through the germanium thin film with frequencies
between ωmax

Ge bulk and ωmax
Ge film thus do not tunnel but are

classically transmitted because the phonon density of states of
the film permits them to exist. In other words, the transmitted
phonons never encounter a classically impenetrable potential
barrier.

Using a similar approach to that of Landry and McGaughey,
we herein examine phonon transport through a Si/vacuum-
gap/Si structure, which is described in Sec. II. We first
use lattice dynamics calculations to predict mode-dependent
phonon transport properties (frequencies, group velocities, and
transmission coefficients) in Secs. II and III. These phonon
properties and Landauer theory are then used in Sec. IV to
predict the vacuum-gap thermal resistance. We compare these
resistances to phonon resistances of a Si/Si grain boundary
and a Si/Ge interface as well as the resistance to photon-
energy transport for a Si/vacuum-gap/Si structure predicted
by near-field radiation theory.
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FIG. 1. (Color online) Schematic of the three-dimensional
Si/vacuum-gap/Si structure for LG = 1.72 Å. The shaded region
between the dark silicon atoms is the volume associated with the
perfect silicon crystal. Vacuum space, shown in white, is added to
form the vacuum gap. What we call vacuum space is, in fact, a
region of finite electron density. The structure is periodic in the x

and y directions and is semi-infinite in the negative and positive z

directions.

II. VACUUM GAP STRUCTURE

To build the Si/vacuum-gap/Si structures, we begin with
a perfect silicon crystal with a lattice constant of 5.430 Å
(Ref. 9). Vacuum space is added between two atomic layers
to form the vacuum gap, as shown in Fig. 1. Note that LG,
the vacuum-gap width, is defined as the z component of
vacuum space, shown in white, and is the distance added
to the perfect silicon structure. For small enough vacuum-
gap widths, the vacuum gap is, in fact, a region of finite
electron density that results in atomic interactions between
the leads. Using the Stillinger-Weber potential to describe the
atomic interactions,10 we perform harmonic lattice dynamics
calculations to predict bulk phonon frequencies ω(κ,ν) and
group velocity vectors vg(κ,ν)11,12 for 10 000 randomly
sampled phonon modes in the first Brillouin zone. Each phonon
mode is identified by its wave vector κ and dispersion branch
ν. We find that evaluating 10 000 modes is sufficient to
provide converged values of the phonon resistances predicted
in Sec. IV.

III. PHONON TRANSMISSION COEFFICIENTS

With the bulk phonon properties, we next predict mode-
dependent phonon transmission coefficients αL→R(κ,ν,LG),
defined as the fraction of incident phonon energy that is
transmitted from the left silicon lead (L) to the right silicon
lead (R) [similar for αR→L(κ,ν,LG), which is identical to
αL→R(κ,ν,LG) for our symmetrical structure]. Phonon trans-
mission coefficients are often calculated using the acoustic
mismatch model (AMM) or the diffuse mismatch model
(DMM).4 Our Si/vacuum-gap/Si structures have the same bulk
material on either side of the vacuum gap. Since both the AMM
and the DMM rely only on bulk phonon properties and do not
include details of the atomic structure at the interface, they
cannot be used to describe phonon transport across the vacuum
gap. Instead, we use the scattering boundary method,7,13–15

which considers the atomic-level detail.

The scattering boundary method is based on harmonic
lattice dynamics theory and assumes that phonon scattering
at the Si/vacuum-gap boundaries is elastic and specular.
The assumption of elastic scattering [i.e., the reflected and
transmitted phonons have the same frequency as the incident
phonon, and αL→R(κ,ν,LG) is temperature independent] is
valid at low temperatures. Landry and McGaughey14 report
that this condition is met for Stillinger-Weber Si/Ge inter-
face systems with temperatures less than T = 500 K. This
temperature independence of thermal boundary resistance
at low temperatures also is observed experimentally.16 The
assumption of specular scattering is valid for the vacuum-gap
structures investigated here because they contain no defects
or roughness that would promote diffuse scattering. In a real
system, however, reconstruction of the free silicon surfaces
may occur, leading to the probability that incident phonons
will scatter diffusely.

For the Si/vacuum-gap/Si structures, the atomic interactions
between the leads are truncated at the Stillinger-Weber cutoff
radius, which corresponds to an absolute atom-atom distance
of 3.77 Å, vacuum-gap width of Lcutoff

G = 1.89 Å. For systems
with LG > 1.89 Å, there is no communication between the
left and the right leads [i.e., αL→R(κ,ν,LG) = 0 for all phonon
modes], and the vacuum gap is a bulk vacuum where phonons
cannot propagate. The gap is thus a classically impenetrable
potential barrier. For structures with vacuum gaps less than
1.89 Å, however, the left and right leads exchange vibrational
energy via atomic interactions. The smaller the gap, the
stronger the interaction between the leads, and the more
channels of allowed vibrational states are available within
the gap for incident phonons to transmit energy. This trend
is illustrated in the mode-dependent phonon transmission
coefficients presented in Fig. 2(a) for LG = 0.02 and 1.72 Å.
For the LG = 0.02 Å structure, the left and right leads
strongly interact, and many incident phonon modes transport
all of their vibrational energy across the vacuum gap [i.e.,
αL→R(κ,ν,LG) = 1 for many phonon modes]. Because silicon
is a nonpolar material, the lattice strain induced by phonons
does not induce a macroscopic electric field. The electric-field /
lattice-deformation coupling mechanism proposed by Prunnila
and Meltaus2 is therefore not present. Thus, we find that even
very small vacuum gaps block some phonon transport. For
LG = 1.72 Å, the leads weakly interact, and αL→R(κ,ν,LG) >

0 for only a few low-frequency phonon modes. If materials
with Coulombic interactions are investigated [e.g., oxides,
DNA (Ref. 17)], communication via atomic interactions (in
addition to electric-field / lattice-deformation coupling effects)
can be expected for larger vacuum gaps.

We find that the magnitude of αL→R(κ,ν,LG) generally
depends on (i) the polarization and direction of travel of the
incident phonon mode with respect to the vacuum gap and
(ii) the magnitude of κzLG, where κz is the z component
of the wave vector. Prunilla and Meltaus2 report similar
dependencies for ZnO/vacuum-gap/ZnO structures. For the
LG = 1.72 Å structure, αL→R(κ,ν,LG) is largest for acoustic
modes that (i) are polarized orthogonal to their direction
of travel (i.e., transverse modes) whose associated atomic
motions extend into the vacuum gap and (ii) have κzLG < 1.
For very small vacuum gaps, κzLG � 1 for all phonon modes
and αL→R(κ,ν,LG) depends strongly on the phonon angle of
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FIG. 2. (Color online) Frequency dependence of (a) phonon
transmission coefficient [αL→R(κ,ν,LG)] for 10 000 randomly sam-
pled phonon modes in the first Brillouin zone and (b) the fraction of
transmitted phonon energy that remains in its incident phonon mode
[η(κ,ν,LG)] for transmitted modes with αL→R(κ,ν,LG) > 0.01. (c)
Bulk phonon density of states for the silicon leads. The phonon
density of states is calculated using a histogram with a bin width of
0.25 THz. The dashed line around 12 THz separates acoustic modes
from optical modes.

incidence and is branch independent. The greater the angle
between the incident phonon velocity vector and the normal of
the Si/vacuum-gap boundary, the less likely that phonon mode
is to transport its vibrational energy across the vacuum gap.
Landry and McGaughey7 report a similar angle-of-incidence
dependence for their Si/Ge/Si and Ge/Si/Ge structures.

The mode-dependent phonon transmission coefficients
plotted in Fig. 2(a) describe the fraction of incident phonon
energy that transmits across the vacuum gap. They do not
describe which phonon modes are excited in the right lead.
In Fig. 2(b), the fraction η(κ,ν,LG) of transmitted energy
that remains in its incident phonon mode as it crosses the

vacuum gap is plotted for modes with αL→R(κ,ν,LG) > 0.01
for LG = 0.02 and 1.72 Å. For a system with no vacuum gap,
all transmitted phonon energy remains in its original phonon
mode as it crosses the junction [i.e., η(κ,ν,LG) = 1 for all
phonon modes]. As LG increases, some of the transmitted
phonon energy excites different modes in the right lead as it
crosses the vacuum gap [i.e., η(κ,ν,LG) < 1 for some phonon
modes]. For the LG = 0.02 Å structure, η(κ,ν,LG) shows a
strong correlation with the bulk phonon density of states in
the right lead, which is plotted in Fig. 2(c). The greater the
phonon density of states in the right lead, the more modes that
are available to excite, and the less likely transmitted phonon
energy is to remain in its original mode. For the LG = 1.72 Å
structure, η(κ,ν,LG) < 1 for the majority of the transmitted
phonon modes.

IV. VACUUM THERMAL RESISTANCE

The phonon thermal resistance of the vacuum gap can be
calculated using the mode-dependent phonon transmission
coefficients. The most commonly applied expression for
calculating the thermal resistance of a junction is based on
Landauer theory and is given by4

R(LG) =
[

1

(2π )3

+∑
ν

∫
L

cph(κ,ν,T )vg,z(κ,ν)

×αL→R(κ,ν,LG)dκ

]−1

. (1)

The summation and integral are over all incident phonon
modes in the first Brillouin zone of the left lead, cph(κ,ν,T ) is
the mode-dependent phonon specific heat, which we evaluate
at a temperature of 300 K using quantum (Bose-Einstein)
statistics, and vg,z(κ,ν) is the z component of the group
velocity vector (i.e., along the [001] direction).

It is well known that Eq. (1) incorrectly predicts a nonzero
thermal resistance when applied to an ideal system with no
interface (e.g., a perfect silicon crystal with no vacuum gap,
LG = 0).4,18 To address this issue, Landry and McGaughey14

combined the approaches of Simons18 and Chen19 to derive
an expression for thermal resistance using the nonequilibrium
(NE) phonon distributions in each lead, which they denote by
RNE ,

RNE(LG)

=
[

1 − 1

(2π )3

+∑
ν

∫
L

βL(κ,ν,T )αL→R(κ,ν,LG)dκ

− 1

(2π )3

−∑
ν

∫
R

βR(κ,ν,T )αR→L(κ,ν,LG)dκ

]
R(LG).

(2)

Here, βL(κ,ν,T ) and βR(κ,ν,T ) are the fraction of the total
heat flux carried by a specific phonon mode in the leads.14,19

We evaluate βL(κ,ν,T ) and βR(κ,ν,T ) at a temperature of 300
K using a model based on the Boltzmann transport equation
under the relaxation time approximation and the Fourier law.14

Because bulk extents of silicon were considered on either
side of the vacuum gap, the bulk phonon properties that we
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FIG. 3. (Color online) (a) Vacuum thermal resistance (RNE) as
a function of vacuum-gap width (LG) at a temperature of 300 K.
(b) Total lattice energy (E) and its derivative (dE/dLG) as a function
of vacuum-gap width. The dashed line at LG = 1.89 Å corresponds
to the Stillinger-Weber silicon potential cutoff (Lcutoff

G ).

previously predicted using harmonic and anharmonic lattice
dynamics calculations20,21 were used to evaluate Eqs. (1)
and (2).

The lattice-dynamics-predicted vacuum thermal resistances
(RNE) are plotted versus the vacuum-gap width in Fig. 3(a).
The limits of RNE are intuitive. For a system with no vacuum
gap, the phonon transmission coefficient is one for all phonon
modes. Under this condition, the two terms involving integrals
in Eq. (2) are each equal to 1/2, and the vacuum thermal
resistance is zero. As the vacuum-gap width increases and
approaches Lcutoff

G = 1.89 Å [the dashed line in Fig. 3(a)], the
mode-dependent phonon transmission coefficients approach
zero, and the vacuum thermal resistance approaches infinity.
We find no significant change in the phonon transmission
coefficients or RNE if the right silicon lead is shifted slightly
(by 0.02 Å) in the x or y direction such that the atomic
monolayers in the right lead do not align with those in the
left lead.

To understand the origin of the local maximum at LG =
0.98 Å, the total lattice energy E and its derivative with respect

to the vacuum-gap width dE/dLG are plotted as a function of
LG in Fig. 3(b). The local maximum in the vacuum thermal
resistance coincides with the point of inflection of the total
lattice energy where dE/dLG is maximum. Using electronic
structure calculations on iron, Eberhart and MacLaren22

showed that the second nearest-neighbor bonds at the interface
are broken at this point.

Although our calculations are performed using quantum
statistics, there is no significant change in the vacuum thermal
resistance results when classical (Maxwell-Boltzmann) statis-
tics are used. This result is not surprising because quantum
effects are not significant for Stillinger-Weber silicon at a
temperature of 300 K (Ref. 21). In a classical harmonic
calculation, cph(κ,ν,T ) is equal to kB/V for all phonon
modes,9 where kB and V are the Boltzmann constant and the
volume of the left lead. We perform the following analysis
in the classical limit to focus on the effects of vg,z(κ,ν) and
αL→R(κ,ν,LG) on the mode-dependent contributions to the
vacuum thermal conductance, which is the inverse of the
vacuum thermal resistance.

The mode-dependent contributions to vacuum thermal
conductance are plotted versus frequency for LG = 0.02 and
1.72 Å in Fig. 4.23 In contrast to the typical assumption that
optical phonons (ω > 12 THz for Stillinger-Weber silicon)
are negligible heat carriers in bulk because of their low
group velocities [e.g., they contribute 3.5% to the bulk
Stillinger-Weber silicon thermal conductivity at a temperature
of 300 K (Ref. 20)], they contribute 32% to the vacuum thermal
conductance for the LG = 0.02 Å structure. As noted in
Sec. III, the phonon transmission coefficients strongly depend
on the phonon angle of incidence and are branch independent
for LG = 0.02 Å. We thus attribute the large contributions
of optical modes to their large phonon density of states [see
Fig. 2(c)]. By including phonon dispersion in the DMM, Duda
et al.24 also found that the contribution of optical phonon
modes to thermal boundary conductance can be significant.
For LG = 1.72 Å, only a few phonon modes contribute
significantly to vacuum thermal conductance. Transverse
acoustic modes are responsible for 90% of the transmitted
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FIG. 4. (Color online) Frequency dependence of vacuum thermal
conductance at a temperature of 300 K. The mode conductances are
sorted using a histogram with a bin width of 0.25 THz. The dashed
line around 12 THz separates acoustic modes from optical modes.
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TABLE I. Vacuum thermal resistance predicted by lattice dynamics calculations and near-field radiation theory for a 1-Å-wide vacuum gap
at a temperature of 300 K. Thermal boundary resistance for a Si/Si grain boundary and a Si/Ge interface predicted by molecular dynamics
simulation using the Stillinger-Weber potential at a temperature of 500 K.

Calculation method Resistance (m2 K−1 W−1)

Si/vacuum-gap/Si (1 Å vacuum gap) Lattice dynamics 0.19 × 10−8 (This paper)
Si/vacuum-gap/Si (1 Å vacuum gap) Near-field radiation theory 0.12 × 10−4 (This paper)

Si/Si grain boundary [	29(001)] Molecular dynamics 0.13 × 10−8 (Ref. 25)
Si/Ge interface Molecular dynamics 0.27 × 10−8 (Ref. 14)

phonon energy with almost all of this contribution coming from
phonon modes with κzLG < 1 (see the discussion in Sec. III).
Longitudinal acoustic (8.5%) and longitudinal optical (1.5%)
modes make up the remaining 10%, while the contributions of
transverse optical modes are negligible.

To put the results shown in Fig. 3(a) into perspective, we
provide the phonon resistance of a Si/Si grain boundary25

and a Si/Ge interface14 predicted from molecular dynamics
simulation using the Stillinger-Weber potential in Table I. The
predicted resistances of both the Si/Si grain boundary and
the Si/Ge interface are comparable to our lattice-dynamics-
based predictions for a 1-Å-wide vacuum gap. Although bulk
vacuum is treated traditionally as a perfect phonon barrier,
the results presented in Table I suggest that an angstrom-sized
vacuum gap should be treated as a phonon barrier with a finite
resistance. One approach may be to treat the solid/vacuum-
gap/solid structure as a system of two solids connected by
weak springs. An example of this approach is described by
Persson et al.5

Because vacuum phonon transport is a parallel heat-transfer
process to near-field radiation, we now compare our lattice-
dynamics-predicted phonon resistances to photon resistances
predicted by near-field radiation theory. Classical radiation
theory predicts that vacuum photon resistance is a constant.
Near-field radiation theory, however, predicts that photon
transport can be enhanced by the tunneling of evanescent
waves and surface plasmon polaritons when vacuum-gap
widths are sufficiently small (e.g., less than 10-μm-wide
for a Si/vacuum-gap/Si structure26). We calculate near-field
radiative heat transfer in our Si/vacuum-gap/Si structures
using Rytov’s theory of fluctuational electrodynamics.26–28

The resistance to photon-energy transport and the resistance
to phonon-energy transport for a 1-Å-wide vacuum gap are
provided in Table I. We find that the resistance to photon-
energy transport is 4 orders of magnitude larger than that to
phonon-energy transport.

Although vacuum phonon transport typically is not con-
sidered in AFM and STM studies, we have shown that
atomic interactions between leads separated by a vacuum
gap can result in energy transport at a rate that is 4 orders
of magnitude greater than predictions of near-field radiation

theory. Altfeder et al.1 experimentally observed a heat flux that
was 6 orders of magnitude larger than predictions of near-field
radiation theory. One explanation for this discrepancy may be
that the electric-field/lattice-deformation coupling mechanism
proposed by Prunnila and Meltaus2 is present in the STM
tip-sample metal-metal junction studied by Altfeder et al.1

but is not considered here. Because free electrons couple
strongly to electric fields, the electron tunneling present in this
STM experiment could have enhanced the atomic interactions
between the leads. This hypothesis suggests directions for
future study. First, how would phonon transport in a STM
system be affected if the voltage difference that facilitates
electron tunneling was removed? Second, can the effective
range of vacuum phonon transport (Lcutoff

G ) be increased by
taking advantage of electron tunneling?

V. SUMMARY

Although bulk vacuum is a classically impenetrable
phonon barrier, we showed that phonons can transport across
angstrom-sized vacuum gaps due to atomic interactions be-
tween the leads. The thinner the vacuum gap, the greater the
energy transport [see Fig. 3(a)]. For a 1-Å-wide vacuum gap,
the magnitude of phonon-energy transport is comparable to
that across a Si/Si grain boundary and 4 orders of magnitude
greater than photon-energy transport across the same structure
(see Table I). While the vacuum gaps studied in this paper
are atomically thin, they have important implications for
thermal transport across macroscopic heterointerfaces where
nanoasperities can play a crucial role in interface conductance.
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