16,597 research outputs found

    Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    Get PDF
    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown

    High-Order Coupled Cluster Method Calculations for the Ground- and Excited-State Properties of the Spin-Half XXZ Model

    Full text link
    In this article, we present new results of high-order coupled cluster method (CCM) calculations, based on a N\'eel model state with spins aligned in the zz-direction, for both the ground- and excited-state properties of the spin-half {\it XXZ} model on the linear chain, the square lattice, and the simple cubic lattice. In particular, the high-order CCM formalism is extended to treat the excited states of lattice quantum spin systems for the first time. Completely new results for the excitation energy gap of the spin-half {\it XXZ} model for these lattices are thus determined. These high-order calculations are based on a localised approximation scheme called the LSUBmm scheme in which we retain all kk-body correlations defined on all possible locales of mm adjacent lattice sites (kmk \le m). The ``raw'' CCM LSUBmm results are seen to provide very good results for the ground-state energy, sublattice magnetisation, and the value of the lowest-lying excitation energy for each of these systems. However, in order to obtain even better results, two types of extrapolation scheme of the LSUBmm results to the limit mm \to \infty (i.e., the exact solution in the thermodynamic limit) are presented. The extrapolated results provide extremely accurate results for the ground- and excited-state properties of these systems across a wide range of values of the anisotropy parameter.Comment: 31 Pages, 5 Figure

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure

    Cauchy boundaries in linearized gravitational theory

    Get PDF
    We investigate the numerical stability of Cauchy evolution of linearized gravitational theory in a 3-dimensional bounded domain. Criteria of robust stability are proposed, developed into a testbed and used to study various evolution-boundary algorithms. We construct a standard explicit finite difference code which solves the unconstrained linearized Einstein equations in the 3+1 formulation and measure its stability properties under Dirichlet, Neumann and Sommerfeld boundary conditions. We demonstrate the robust stability of a specific evolution-boundary algorithm under random constraint violating initial data and random boundary data.Comment: 23 pages including 3 figures and 2 tables, revte

    Phase Transitions in the Spin-Half J_1--J_2 Model

    Full text link
    The coupled cluster method (CCM) is a well-known method of quantum many-body theory, and here we present an application of the CCM to the spin-half J_1--J_2 quantum spin model with nearest- and next-nearest-neighbour interactions on the linear chain and the square lattice. We present new results for ground-state expectation values of such quantities as the energy and the sublattice magnetisation. The presence of critical points in the solution of the CCM equations, which are associated with phase transitions in the real system, is investigated. Completely distinct from the investigation of the critical points, we also make a link between the expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state correlation coefficients. We are thus able to present evidence of the breakdown, at a given value of J_2/J_1, of the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J_2 = 0) on any bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively, given (to two decimal places) by J_2/J_1 = 0.26 and J_2/J_1 = 0.61.Comment: 28 pages, Latex, 2 postscript figure

    Influence of quantum fluctuations on zero-temperature phase transitions between collinear and noncollinear states in frustrated spin systems

    Full text link
    We study a square-lattice spin-half Heisenberg model where frustration is introduced by competing nearest-neighbor bonds of different signs. We discuss the influence of quantum fluctuations on the nature of the zero-temperature phase transitions from phases with collinear magnetic order at small frustration to phases with noncollinear spiral order at large frustration. We use the coupled cluster method (CCM) for high orders of approximation (up to LSUB6) and the exact diagonalization of finite systems (up to 32 sites) to calculate ground-state properties. The role of quantum fluctuations is examined by comparing the ferromagnetic-spiral and the antiferromagnetic-spiral transition within the same model. We find clear evidence that quantum fluctuations prefer collinear order and that they may favour a first order transition instead of a second order transition in case of no quantum fluctuations.Comment: 6 pages, 6 Postscipt figures; Accepted for publication in Phys. Rev.
    corecore