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ABSTRACT

Rotor hover performance data were obtained for the full scale Advanced Tech-
nology Blade (ATB) designed for the XV-15. The ATB rotor thrust-weighted
solidity is 0.10. The test was conducted as part of contract NAS2-11250 at
the NASA-Ames Outdoor Aeronautical Research Facility (OARF). The XV-15
basic rotor (solidity = .089) was also tested. Variations of the ATB tip
planform and cuff planform were also tested. A peak figure of merit of
0.806 was demonstrated for the ATB and a value of 0.791 for the XV-15 steel
blades. Measurements of the downwash in the wake at 0.4R below the disc are
also presented.
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1.0 SUMMARY

This document presents isolated rotor test results conducted in two phases
at Ames Research Center in March and July/August 1984. In March a benchmark
test of the XV-15 steel blades was performed and in July/August the Advanced
Technology Blade, including a number of variations, was tested. Between
these two test periods, the facility was occupied by a scaled version of the
v-22 rotor. All rotors tested were 25 ft. in diameter. The V-22 test is
reported in Reference 1. '

Figure 1.1 shows the XV-15 aircraft in several modes of operation. Figure
1.2 shows the baseline version of the ATB mounted on the test stand at NASA-
Ames. Figure 1.3 shows the untwisted blade planform and distribution of
airfoil sections for the baseline configuration.

The performance indices of both the XV-15 rotor and the ATB rotors turned
out to be significantly better than expected. Predicted and test values of
figure of merit as a function of Cy for both rotors are shown in Figure 1.4.
These results, along with those from configuration variations, are discussed
in detail in Section 7.0. Possible reasons for the poor quality of the pre-
dictions are identified, and suggestions are made for improvements in pre-
dictions capability.

The test facility used for this program was the Outdoor Aeronautical Re-
search Facility at Ames Research Center. Major improvements to the power
transmission and performance measuring components of the NASA test rig were
funded under the program. These included provision of a 4:1 reduction gear
box which permitted testing beyond the power levels available in the XV-15
aircraft. A major improvement in the test hardware was the development of a
six-component balance with minimal load interaction, absence of thermal
drift, and direct measurement of rotor thrust and torque. These features of
the program are discussed further in Section 3.0 and in more detail in Refer-
ence 2. -

The tests provided definitive thrust and torque data for the XV-15 steel
blade and the Advanced Technology Blades. Hover performance for both rotors
(and for the V-22 rotor tested using the same equipment) was significantly
better than that predicted using contemporary theory. The measured peak
figures of merit were all in the region .79 - .81, whereas predicted values
did not exceed .79. In addition, peak performance occurs at a higher value
of Ct than predicted, and does not drop off as fast as predicted at the
higher values of Ct.

The airflow velocity distribution was measured at a distance approximately
0.4R downstream from the rotor plane. Vapor trails of the tip vortices were
generated at high Ct's in some atmospheric conditions and photographs of
these have been used to estimate the rate of wake contraction and velocity
variation as a function of distance from the rotor planes. These additional
data have been used to initiate improvements in prediction methodology.
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Blade bending moments were recorded at a number of stations and critical
stations were monitored for safety. This included data near the tip which
has been used to improve the mathematical modelling in this region. The
test included eight hours of endurance and structural validation testing
during which control inputs were cycled and blade frequency data was
accumulated.

Over the test period Ames Research Center engineers monitored the near and
far-field noise levels generated by rotor operation. The Advanced Tech-
nology Blades were found to generate significantly less noise than the XV-15
metal blades.

A summary of the rotor performance results along with conclusions and
recommendations are given in Section 10.0.

2.0 INTRODUCTION

The XV-15 tilt rotor demonstrator aircraft has been flying successfully
since 1977 using rotor blades of the original design. These blades have a
rectangular planform and the material is steel. The blade design was opti-
mized for a 9000 1bs. gross weight aircraft and there was no change to the
rotor design when the gross weight became 13,000 1bs.

This, along with a number of other factors including fatigue strength limita-
tions of the metal blades, led NASA to initiate a program to develop compos-
ite blades optimized to different performance criteria and exploiting the
range of design options made feasible by composite materials. Other objec-
tives of the Advanced Technology Blade program were to demonstrate fabrica-
tion techniques appropriate to highly twisted composite blades suitable for
tilt rotor applications.

This report documents the XV-15 Advanced Technology Blade Rotor Test con-
ducted at the Outdoor Aeronautical Research Facility (OARF) at NASA-Ames
during April 1984 and July 1984. The report includes a description of the
test apparatus and instrumentation, a presentation of the results, and a
discussion of the implications of the results. The detailed, fully-cor-
rected test data may be obtained from NASA-Ames 40' x 80' wind tunnel staff
in the form of computer tabulations.

3.0 DESCRIPTION OF TEST INSTALLATION
3.1 Test Stand

The Qutside Aerodynamic Research Facility at NASA-Ames consists of a large
concrete pad (Fig. 3.1) with a steel platform at the center of which is
mounted a test stand carrying the propeller test rig. Oetails of the layout
of the stand are given in Fig. 3.2. The supporting test stand consists of a
horizontal frame carrying the motor and drive system. This frame is sup-
ported in front by two braced vertical steel beams and in the rear by a
single, smaller beam. The rotor centerline 1ies 22 feet above the metal
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platform providing 9.5 feet of clearance between the blade tips and the
ground. The rotor hub, controls, six-component balance, gearbox and elec-
tric motor with services are mounted in-line within a 28-inch diameter cCy-
lindrical cowling. The motor housing is mounted on three load cells to
provide rotor force and moment data that is independent of, and supplemental
to, data from the main balance. The propeller test stand is described in
more detail in Reference 2. Additional details and strength and safety
analyses are provided in Reference 3.

3.2 Motor and Drive System

The test stand is powered by an electric motor driving through a new 4:1
reduction gearbox. The gearbox is oil cooled; the motor is water cooled.
Gearbox output shaft torque limit is 252,000 in.lb. corresponding to the
electric motor 1imit of 3,000 HP at 3000 RPM. This was sufficient to test
well beyond the current (design maximum 163,000 in.1b.) operating torque
1imit of the XV-15. The gearbox is a Cincinnati Gear Co. epicyclic gear
unit with a modified aft case to interface with the NASA motor package. The
gearbox unit mounts directly to the face of the motor unit and supports the
rotor balance through the balance mounting ring. The system consists of a
sun gear around which are arranged a number of planets roiling within an
annulus providing a coaxial design with power transmission at more than one
point. Fig. 3.3 presents the gearbox operating envelope and shows that the
hover RPM of the ATB and XV-15 rotors (565 RPM) is within the available
operating range. Maximum RPM was limited to 625 RPM by the blade retention
strap. Operating time below 370 RPM is also limited because of gear tooth
and bearing lubrication considerations. However, this RPM is below the
present range of interest. The motors and gearbox may rotate in either di-
rection, however all the rotors tested were designed to rotate in the clock-
wise direction (viewed from the rear).

3.3 Balance

The test stand is furnished with a six-component balance. As shown in Fig-
ures 3.4 and 3.5, the rotor balance system is mounted between the hub/stack
assembly baseplate and the transmission (through the balance mounting ring).
The balance has two sections. The front section is a multi-flexured,
torque-sensing element which measures the frictional torque of the bearings.
The rear thrust-measuring section of the balance system consists of two
flexure plates mounted on either end of cylindrical spacer units. These
flexure elements measure thrust and also normal force, side force, pitching
moment and yawing moment. The primary torque measurement is made by strain
gages mounted on the drive shaft forward flexible coupling. Additional
strain gages on the flexible couplings measure the axial load in the drive
shaft. This is a function of the axial motion of the main thrust measuring
flexures and amounts to approximately 3% of the total load.

Balance strain gages are of the foil type and are temperature compensated.
The primary sensitivities are in the thrust and torque directions with a

maximum error of 50 1b. of thrust and 25 in.lb. of torque. The balance fis
designed to withstand the loss of onme rotor blade without yielding and has
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infinite 1ife over the normal operating load range. Axial load range is

-400 to 16,000 1b. and the torque range is 0 to 252,000 in.1b. Table 3.1
summarizes the design load ranges and accuracies for the rotor balance. The
flexible couplings are designed to measure a maximum torque of 252,000 in.1b.
with an accuracy of * 120 in.1b.

3.5 Hub and Controls

The 3-bladed gimballed rotor hub and upper controls are XV-15 rotor compo-
nents defined by BHT Drawing No. 300-018-012. The ATB pitch housing was
designed to be compatible with this hub. The upper controls provided con-
trol by collective, longitudinal and lateral pitch. Collective pitch motion
was transmitted through the center of the shaft and was controlled by a hy-
draulic actuator. Longitudinal and lateral cyclic motion was provided
through the rotating swashplate. The motions of the nonrotating swashplate
were controlled by electric linear actuators. Both collective and cyclic
pitch actuator control systems were open loop with the electric cyclic pitch
actuators rate-limited to 0.5 deg/sec. Collective pitch motion was limited
to a range of -4 to 25 degrees; cyclic pitch was electrically limited to
3.0 degrees and a mechanical stop was provided at * 4.0 degrees.

The complete hub/stack assembly was mounted on a base plate (actuator plate)
which was also the mounting point for the control actuators and the connect-
ing element to the balance system. A slipring assembly with 48 rings was
incorporated within the stack to provide transmission of data from the ro-
tating components to the data acquisition system.

A cowling covered the upper controls and balance and was attached to the
motor casing. The cowling provided weather protection.

3.6 Rotors

3.6.1 Advanced Technology Blade Rotor

The ATB rotor is a three-bladed, 25 ft. diameter rotor with a thrust-weight-
ed solidity (o) of 0.10, which is 12.3% more than the solidity of the XV-15
steel blades (.089). The blades are of composite construction. Theoretical
blade chord, twist, and thickness/chord distributions for the baseline ATB
are given in Figures 3.6, 3.7, and 3.8 respectively. Sectional properties

are given in Figures 3.9 through 3.13. Estimated blade frequencies in the
cyclic and collective modes are shown in Figure 3.14 along with test measure-
ments. The blades were inspected for fidelity to the design values of twist,
chord, airfoil contour and surface condition, and were found to be acceptable.

The rotor blades were instrumented to record flap, lag, and torsional mo-
ments at selected spanwise positions. Details of the instrumentation are
given in Section 4.0, Table 4.1.

Figure 3.15 is an exploded view of the advanced technology blade with call-
outs of the various materials. Figure 3.16 presents the baseline ATB con-
figuration with the alternate tip and cuff sections that were tested.
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Table 3.1 Rotor Balance Load Range and Accuracy
h % OF
COMPONENT LOAD RANGE ACCURACY MAX.
LOAD

AXIAL FORCE (THRUST) -400/16,000 L8 +50 LB - 0.3

NORMAL FORCE + 600 LB + 1218 2.0

SIDEFORCE + 600 LB + 12 LB 2.0

PITCHING MOMENT * 20,000 IN-LB  + 400 IN-LB 2.0

YAWING MOMENT + 20,000 IN-LB  + 400 IN-LB 2.0

" ROLLING MOMENT
(FRICTION TORQUE)

+ 15,000 IN-1B

+25 IN-LB 0.16

P RN—e——— — — e
e —————— s
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ATB COUPLED ROTOR NATURAL FREQUENCIES
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3.6.2 XV-15 Rotor

The XV-15 blades tested in this program were the same full scale blades that
had been previously tested by Bell Helicopter Textron Corporation on the
Wright Patterson Air Force Base (WPAFB) whirl tower during the XV-15 devel-
opment program (Reference 4). The planform, twist, airfoil and thickness/
chord distributions are shown in Fig. 3.17.

4.0 INSTRUMENTATION

4.1 Instrumentation - General

The instrumentation installed for the ATB and XV-15 steel blade tests is
indicated in Figure 4.1. This shows the type of data measured and which
variables were monitored for safety. A1l data was recorded on magnetic
tape. A1l non-steady state variables were subject to high speed sampling.

4.2 Rotor Balance Instrumentation

The rotor balance was instrumented to measure six components of rotor force
and moment: thrust, sideforce, normal force, pitching moment, yawing mo-
ment, and rolling moment. Thrust and rolling moment measurements were sig-
nificantly more sensitive than the others, as indicated in Table 3.1. The
drive shaft flexible coupling was instrumented to measure torque and axial
force. The balance rolling moment (bearing friction torque) was subtracted
from the shaft torque to provide the net rotor torque. The drive shaft
axial force was added to the balance thrust measurement to give the rotor
thrust. Balance temperature was continuously monitored by thermocouples.

4.3 Blade and Hub Instrumentation

The instrumented blade was strain gaged to measure torsion, flap bending,
and chord bending at the radial stations shown in Table 4.1. All gages were
mounted on the spar beneath the airfoil contour.

Hub instrumentation was provided to measure control system position (8,759
A,, B;), hub gimbal angles, root collective, pitch-1ink load, and hub yoke
moments. Transducers were installed in the rotating system (hub and drive
system) to measure the following: -

(a) Blade pitch ahg]e - measured by a potentiometer mounted on the blade
housing. The potentiometer was a custom-fit resistance element with
wiper arm.

(b) Hub gimbal angle - measured by a potentiometer attached to the gimbal
inside the hub.

(c) Hub yoke bending moments - measured by strain gages mounted on the hub
spindles; both flapwise and chordwise gages were provided.

22
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Table 4.1 Placement of Blade Strain Gages

]

PERCENT RADIUS

FLAP 10.01) 206 29.0 49.0 69.0 84.0
CHORD 10.01) 20.6 30.0 50.0 70.0 85.0
TORSION - - 30.0 51.0 71.0 -

b

NOTE: 1) ON PITCH HOUSING

2) ON HUB SPINDLE THERE WERE IN- AND OUT-OF-PLANE
BENDING GAGES AT 6% RADIUS

3) SEE RUN LOG FOR ADDITIONAL INFORMATION
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Pitch 1ink load - measured by a strain gage bridge on the pitch Tink.

Flexible coupling torque - measured by strain gage bridges (active and
spare) on the forward flexible coupling of the drive shaft.

Flexible coupling axial load - measured by strain gage bridges on the
forward flexible coupling.

Forward shaft bending - measured by (2) perpendicular bending bridges
mounted on the rotor shaft.

Rotor 1/rev and 512/rev - measured by a phototachometer on the drive
shaft.

Hub acceleration - measured by accelerometers mounted on support struc-
ture near the hub.

The signals from the rotating system were transferred to the fixed system
through a 48-ring slipring assembly. As configured, the test stand was lim-
ited to 10 channels on the slipring. For the hover performance test, the
recorded parameters and their corresponding slipring channels requirements
were as follows:

Parameter Channels Required

*Shaft torque
*Shaft axial load (AFFLEX)
*Pitch housing flap bending @ r/R = .10
*Pitch housing chord bending @ r/R = .10
*Pitch link load
Root collective
*Gimbal angle
Blade flap bending @ r/R = .31
*Hub yoke chord bending
*Hub yoke flap bending

[ T = T S R =

*Required for safety

Although only 10 channels were available on the slipring at any one time,
these channels could be reassigned to read other strain gages, if desired.
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4.4 Wake Rake

A wake rake consisting of 22 pitot-static tubes was mounted behind the rotor
disc plane at the station corresponding to the wing upper surface. The pur-
pose of the rake was to measure the isolated rotor slipstream velocities and
angles under different rotor operating conditions and to use this data to
understand the structure of the rotor slipstream and the wing download and
its distribution, The wake rake was connected to a Scanivalve to measure
the pressures. The wake rake and the spacing of the pitot-static tubes is
‘shown in Fig. 4.2.

4.5 Anemometer

A wind speed and direction transducer was installed on a narrow tower ap-
proximately 200 feet north and 200 feet east of the rotor hub centerline.
The indicator was on approximately the same level as the rotor hub. The
signals from the transducer were fed to the data acquisition equipment in
the control room.

4.6 Acoustical Measurements

Near-field and far-field noise levels were measured. The near-field micro-
phone represented a point on the side of the fuselage of a typical tilt
rotor in hover. Far-field noise was recorded by an array of microphones at
250 ft (76m) and 650 ft (198m) radius at 0, 15, 30 and 45 degrees behind the
rotor disc.

5.0 DATA ACQUISITION AND REDUCTION
5.1 Data Acquisition

The NASA-Ames OARF data system provided signal conditioning and amplifica-
tion for 50 data channels. Steady-state data were recorded on digital tape.
A quick-look short-form print-out was provided at the end of each run and a
detailed print-out was processed overnight. A monitor program displayed up
to 15 steady-state parameters on the Test Engineer's CRT. Two analog tape
recorders were used for safety monitoring and acquisition of dynamic data.
Complete details of the assignments of the data acquisition equipment are
given in References 2 and 5.

The following quantities were measured:

Rotor balance thrust, T (1b.)

Rotor balance normal force, NF (1b.)

Rotor balance side force, SF (1b)

Rotor balance pitching moment, PMB (in.1b.)
Rotor balance yawing moment, YMB (in.1b.)
Rotor balance rolling moment, RMB (in.1b.)
Load cell axial, normal, and sideforces (1b.)
Rotor RPM

Shaft torque (in.1b.)
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Shaft axial load AFFLEX (1b.)

Hub gimbal angle, B (degrees)

Blade root collective, 85 (degrees)

Lateral cyclic (swashplate axes), A} (degrees)
Longitudinal cyclic (swashplate axes), Bj (degrees)
Blade collective pitch, 8 75 (degrees)

Blade flap moment at 31% radius (in.1b.)

Blade chord moment at 10% radius (in.1b.)

Pitch housing flap moment at 10% radius (in.1b.)
Pitch housing chordwise moment (in.1b.)
Pitch-1ink load (1b.)

Ambient wind speed, Vyinp (knots)

Ambient wind azimuth, ¢y, (degrees)

Ambient temperature (°Fy

Ambient barometric pressure (psi)

Relative humidity, (percent)

Hub horizontal acceleration (g)

Hub vertical acceleration (g)

5.2 Data Processing

The data reduction program (Reference 6) performed the following operations:
(a) Subtracted non-rotating zero values.
(b) Converted corrected voltages to engineering units. -
(c) Computed rotor forces and moments from load cell readings.

(d) Computed rotor balance forces and moments from balance flexure
outputs.

(e) Corrected rotor balance forces and moments for component interac-
tions through the respective balance calibration matrices.

(f) Corrected rotor balance data for temperature effects, if
significant.

(g) Corrected rotor balance thrust for flexible coupling axial load.

(h) Corrected rotor shaft torque for bearing friction (balance rolling
moment) . ’

(i) Transferred rotor balance data to the reference body axis (rotor
hub centerline).

(j) Corrected rotor torque for wind effects, using the method present-
ed in Appendix A. '
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(k) Computed atmospheric data from temperature, humidity, and pressure
measured at the test site.

(1) From the corrected data, computed rotor parameters (Vrip and Mrrp)
and coefficients (Ct, Cp, etc.) as well as rotor horsepower and
figure of merit.

Provisions were made to harmonically analyze all rotating parameters (blade,

hub, shaft and control system) and vibratory balance flexure and fixed
system accelerometer data at Boeing Vertol.

6.0 TEST RECORD AND DATA ACCURACY

The chronology of the testing is presented in Fig. 6.1 and the XV-15/ATB
Test Run Log in Fig. 6.2. A rigorous calibration of the rotor balance had
been performed at the place of manufacture before assembly of the propelier
test rig at the OARF. Following installation of the rig at Ames, another
calibration was made which included checks for thermal drift effects on bal-
ance readings and a determination of the interaction between the torque and
axial forces at the flexible coupling. The contribution of the flexible
coupling axial load (AFFLEX) was also determined. This accounts for approx-
imately 4% of the net rotor thrust. This check calibration showed that the
installed balance was behaving to specification and that the data obtained
from the load cells was in close agreement with the balance data.

The XV-15 blades were installed, checked out, and testing commenced.

Initial results indicated that the rotor performance was lower than
expected. This was caused by an improper pretest procedure for obtaining
R-cals in which the collective actuator was moved to maximum stroke and
induced a false load indication in the balance. When this was understood, a
new check calibration was performed using the minimum collective setting for
zeroes. The results are presented in Figures 6.3 through 6.11. The check
calibration was made with thrust and torque loads applied singly and in
combination. The maximum applied thrust was 7000 1b. which corresponds to a
Cr of .01 at hover RPM. At this condition the error’in rotor thrust was
only 0.03 percent, as read from the balance (Fig. 6.3). The Tload cell
result was 0.4 percent off (Fig. 6.4). Some hysteresis is evident in both
systems. Figures 6.5 and 6.6 present the variation of the difference
between the actual and measured torque for a range of applied torque levels.
The torque balance error is 0.3 percent (Fig. 6.5). The load cell check
calibration shows considerable hysteresis compared to the balance (Fig.
6.6). Figures 6.7 and 6.8 present the variation of the difference between
the applied and measured thrust at various torque levels, for a constant
applied thrust of 7000 1b. Figures 6.9 and 6.10 show the variation between
the applied and measured torque with a constant applied thrust of 7000 1b.
The errors are essentially the same as for the case with zero torque
applied. Figure 6.11 shows the effect of RPM on the correlation of balance
and load cell thrust.
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ALANCE THRUST ERROR vs. APPLIED THRUST

RUN 20
© INCREASING LOAD

@ DECREASING LOAD

20 I~

10

10k APPLIED THRUST LOAD (LB)
) (FROM SINGLE AXIS LOAD CELL)

ROTOR PALANCE THRUST - APPLIED THRUST (LB)
o

Figure 6.3 Check Calibration Results: Thrust (From Rotor Balance)
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LOAD CELL THRUST ERROR vs. APPLIED THRUST

RUN 20
O INCREASING LOAD
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Figure 6.4 Check Calibration Results: Thrust (From NASA Load Cells)
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ACTUAL TORQUE - TORQUEC (FT.LB.)
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BALANCE TORQUE ERROR vs. APPLIED TORQUE
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_Flgure 6.5 Check Calibration Results: Torque

(From Rotor Balance)
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ACTUAL TORQUE - QLC (FT.LB.)

LOAD CELL TORQUE ERROR vs. APPLIED TORQUE

RUN 19 '
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NOTE: QL(i = TORQUE FROM NASA LOAD CELLS
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Figure 6.8 Check Calibration Results: Torque
(From NASA Load Cells)
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BALANCE_THRUST INTERACTION DUE TO TORQUE
WITH 7000 LB _APPLIED THRUST LOAD
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—

Figure 6.7 Check Calibration Results: Thrust with
' - Torque Load Applied (From Rotor Balance)

45




CR177436

(LB)
2 8 5

—
o

LOAD CELL THRUST - APPLIED THRUST
o

LOAD CELL THRUST INTERACTION DUE TO TORQUE
WITH 7000 LB APPLIED THRUST LOAD

RUN 20
& INCREASING
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i ) { ) ] ] I { |
1000 2000 3000 4000 5000 6000 7000 8000 9000

= ' APPLIED TORQUE (FT.LB.)

Figure 8.8 Check Calibration Resuits: Thrust with
Torque Load Applied (From NASA Load Cells)
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BALANCE TORQUE ERROR vs. APPLIED TORQUE
WITH 7000 LB APPLIED THRUST

RUN 20
© INCREASING

© DECREASING

NOTE: TORQUEC = ROTOR TORQUE CORRECTED FOR
FRICTION TORQUE (RMRB1) AND
AFFLEX INTERACTION

RMRB1 = ROLL MOMENT (CORRECTED) FROM
120 I~ ROTOR BALANCE
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40
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3000 4000

APPLIED TORQUE - (TORQUEC + RMRB1%*)
* DUE TO MISALIGNMENT OF AXIAL LOAD

-100 L

Figure 6.9 Check Calibration Results: Torque with Thrust Load Applied
(Corrected for Friction Torque and AFFLEX Interaction)
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LOAD CELL TORQUE ERROR vs. APPLIED TORQUE

WITH 7000 LB APPLIED THRUST

RUN 20
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¥ DECREASING
NOTE: QLC = CORRECTED TORQUE FROM NASA LOAD CELLS
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Figure 6.10 Check Calibration Results: Torque with Thrust Load Applied
(From NASA Load Cells)
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The rake to measure rotor induced velocity was installed and calibrated to-
ward the end of the XV-15 blade testing and only a limited amount of such
data is available for these blades.

At the completion of the benchmark testing on the XV-15 steel blades the rig
was handed over to the V-22 program (formerly known as the JVX) for rotor
performance and download testing of a scaled rotor and semispan wing instal-
lations. This V-22 test program is reported in Reference 1.

At the conclusion of the V-22 testing the rig was refurbished and an inter-
mittent problem with the force readout from the drive system flexible cou-
pling gages (AFFLEX) was resolved. The AFFLEX signal is a measurement of
the thrust force in the drive shaft when this is stretched or compressed by
flexure motions in the main balance. This component of thrust was measured
by bridges located 180 degrees apart in the flexible coupling so that 1 per
rev components of force would cancel. One set of gages was found to be
malfunctioning and these were disconnected. The AFFLEX signal was then
recalibrated with the rotor in the azimuthal location where the 1 per rev
component passed through zero.

In subsequent testing the rotor was set to this position while pre- and
post-test zeroes were being taken.

The Advanced Technology Blades were installed and testing commenced in the
baseline configuration (i.e., elliptical tip and truncated cuff). This was
followed by configuration variations which included a full airfoil cuff,
swept and square tips, cuff removed, and changes in blade sweep. A check
calibration of all measuring systems was performed at the conclusion of
testing. This confirmed that accuracy was to the same standard of excel-
lence as at the beginning of the test program.

7.0 ROTOR PERFORMANCE
7.1 Xv-15 Metal Blade Performance

The performance of the XV-15 metal blades at the nominal operating tip Mach
number of 0.69 is presented in Fig. 7.1 as a plot of rotor thrust coeffi-
cient vs. rotor power coefficient corrected to zero wind conditions. The
data was gathered during six separate runs and the data scatter is small. A
mean line was faired through this data and used to calculate the rotor fig-
ure of merit shown on Figure 7.2. Note that this figure of merit curve al-
ways falls below the line faired through the individual values of figure of
merit, calculated from each test point. This is the correct method for de-
fining the average rotor figure of merit; the average thrust - power rela-
tionship for the rotor is first determined, then quantities, such as figure
of merit, which are functions of this relationship, may be computed. Peak
figure of merit for the XV-15 rotor is 0.791 at a thrust coefficient of
0.0105. Also shown in Figure 7.2 is the performance of the XV-15 rotor as
tested on the Wright Patterson AFB whirl tower in 1973 (Reference 4). The
data has been adjusted for the effects of the tower. This comparison shows
that the shape of the curve is the same. The peak figure of merit occurs at
the same thrust coefficient but has a lower value.
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FIGURE OF MERIT (FM)

NASA-AMES 0.A.R.F. TEST 910
Xv-15 METAL BLADE

symgoL RuN ReM Yrip Mrip

o 15 587.7 769.3 .690 1.0
o 22 582.8 762.9 .691 0.4
g © 23 583.7 764.1 .689 1.1
0 25 586.1 767.2 .690 2.6
v/ 26 586.2 767.3 .683 2&7
) o
.80 |- o0V & L0
. O OARF TEST FAIRING
.76
2
WPAFB TEST FAIRING
(CORRECTED FOR WHIRL TOWER
68 BLOCKAGE EFFECTS)
.64
.60
.56 |-
0
NOTE: LINE IS FROM FAIRING OF CT Vs, CP DATA
52 - POWER COEFFICIENT CORRECTED FOR WIND YELOCITY
. AND OIRECTION
RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
ARE THE AVERAGED VALUES FOR EACH RUN
L | L L L L ] | )
.004 .006 .008 .010 .012 .014 .016 .018

ROTOR THRUST COEFFICIENT (CT)

Figure 7.2 XV-15 Figure of Merit
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Figure 7.3 presents the variation of thrust coefficient with collective
pitch. The collective pitch values have not been corrected to zero wind
conditions. It is estimated, however, that the correction would reduce the
collective by 1 degree, at most. Also shown on Figure 7.3 is data (without
correction to collective for tower blockage) from the whirl tower test of
Reference 4. It is not known why there is a 4 degree difference between the
two sets of data. The collective pitch settings recorded in the present
test of the XV-15 metal blades appear to be incorrect, and are presented
only as confirmation of the shape of the curve of Cy vs. 6 75 Calculations
using performance codes support the WPAFB values of collective as does
flight test experience.

Maximum thrust was not reached because alternating loads increased rapidly
above a Ct value of .0161. Figure 7.3 suggests, however, that a reasonable
value for maximum thrust coefficient for XV-15 would be .0165, i.e. CT/OTMAX
= ,185. _

One measure of rotor induced efficiency is k, as defined by
c.3/2
C.=¢C +k-T—
P P
0 vZ
where k = 1.0 corresponds to ideal induced efficiency. The value of CPo is
defined by linear extrapolation to zero thrust of the curve of Cr3/2 vs. Cp.

This data is presented in Figure 7.4 and was used to compute the values of k
presented in Figure 7.5.

The sensitivity of the XV-15 rotor performance to tip Mach number is pre-
sented in Figures 7.6 and 7.7. Tip Mach number was varied from 0.60 to
0.73. No well-defined trend is evident although there is a tendency for
reduced performance to accompany increases in Mach number.

The distribution of downwash velocity in the wake of the rotor was measured
- by the wake rake described in Section 4.5. The rake was positioned so that
the ends of the probes would coincide with the probable location of the up-
per surface of a wing. At 75 percent radius the distance from the rotor
disc to the XV-15 wing surface is 0.40R. .

In addition to measurements of the wake, a limited series of photographs
were obtained of the tip vortices made visible by water vapor condensation.
Figure 7.8 is a typical example and shows clearly the helical path of the
vortices from each blade. By measuring from these photographs, M. Maisel of
NASA Ames succeeded in constructing the shape of the outer wake. Figure 7.9
shows that, for Cy = .0116, the wake contracts to approximately .79R at .55R
downstream of the disc. At 0.4R where the probe lies, the tip vortex is
Tocated at 0.80R. This value is confirmed by the data of Fig 7.10 which
shows the radial distribution of downwash for selected values of rotor
thrust coefficient. Lines have been faired through the data obtained from
the pure pitot-static probes only. The data from the 5-hole angle of attack
probes was considered to be less reliable. At all the values of Ct shown,
the edge of the wake appears to lie at 80 percent radius.
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THRUST COEFFICIENT (CT)

-020 '}’

.018 -

.016 -

.014 -1

012 T

NASA-AMES O0.A.R.F. TEST 910
XV-15 METAL BLADE

WPAFB_WHIRL TOWER (REF 3)

010 T oV = 740
® VT = 600
A VT = 786
.008 +
syM run geM Y1 Mrie Ywino
A 22582.8762.9 ..6891 0.4
¢ 23583.7764.1.689 1.1
006 A O 25586.1767.2.690 2.6
Y 26 586.2767.3.688 2.7
.004 4
)
2 NOTE: RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
0O 2 B ARE THE AVERAGED VALUES FOR EACH RUN.
L. 1 | . § 1 ) 1 S |
-4 0 4 8 12 16 20 24

COLLECTIVE PITCH (@ ,)

Figure 7.3 XV-15 Thrust Coefficient vs. qulective Pitch
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FIGURE OF MERIT (FM)

NASA-AMES 0.A.R.F. TEST 910
XV-15 METAL BLADE

RUN 16
ar o s ogeM Ve Mrre Voo
o 510.9 668.8 .599 3.4
O 565.8 740.6 .663 4.7
5 589.2 771.2 .690 4.8
w0 b © 624.8 817.8 .731 4.
.76 |-
7 b
.68 |-
.64 |-
.60 |-
.56 |
.52 - | NOTE: LINE IS FROM FAIRING OF CT vs. CP DATA
POWER COEFFICI.ENT CORRECTED FOR WIND VELOCITY
AND DIRECTION
a8 L L ! ] i | ! I J
.004  .006 .08  .010  .012  .014  .016  .0l8

ROTOR THRUST COEFFICIENT (CT)

Figure 7.7 Effect of Tip Mach Number on Figure of Merit of XV~-15 Blades
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Figure 7.8 Tip Vortices of XV-15 Metal Blades
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1.00

.95

.90

.85

RADIAL STATION (r/R)

.80

.75

NASA-AMES 0.A.R.F. TEST 910
XV-15 METAL BLADE

RUN 25
[~ VTIP= 767 FPS

C;= .01159
WIND= 5 KTS AT 2°

LOCATION OF
WING U/S

L . ] ] 1 L J
0 .1 .2 3 4 .5 .6

AXIAL STATION (x/R)

Figure 7.9 Contracted Wake Shape of XV-15 Rotor Deduced from

Tip Vortex Photographs
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DOWNWASH VELOCITY (FPS)

NASA-AMES 0.A.R.F. TEST 910
XV-15 METAL BLADE

Z/R= 0.4 RUN 25

-

v v
smre O mew Yrp "Tip TIND oo souip symeoLs penoTE DATA
a 16 .00796 585.9 766.9 .690 2.9 FROM ANGLE OF ATTACK PROBES

o 20 .01053 585.7 766.7 .690 2.4
o 22 .01246 585.5 766.4 .689 3.3
O 24 .01422 586.9 768.3 .690 2.9
RADIAL STATION (r/R)

0 2 4.6 8 1.0 1.2 1.4
0 | T ! T |

—

20 |- SIDE
oF
NACELLE

60 I~

80 I~

100 |-

120 -

140 &

Figure 7.10 Distribution of Downwash Velocities for Various Thrust
' Coefficients for XV-15 Rotor

61




CR177436

The shape of the downwash distribution changes with increasing thrust coef-
ficient, becoming more skewed toward high downwash values just inside the
tip vortex. OQutside the tip vortex, the wake-induced velocity 1s essen-
tially zero; the non-zero values of downwash shown are attributable to the
ambient wind.

7.2 Baseline ATB Performance

The baseline ATB configuration consists of an approximately elliptical tip
planform and a cuff truncated at the trailing edge to permit gimbal angles
up to 12 degrees at high collective pitch settings.

Thrust versus power coefficient test data is shown in Figure 7.11. The data
is shown for four different runs during which tip Mach number was held
constant and for two runs at high and low Mach number. There is remarkably
1ittle scatter. The solid Tine in Figure 7.11 is an estimated mean faired
through the data. This faired 1ine is the basis of the figure of merit
shown by the solid line in Figure 7.12. The individual test point figures
of merit are also shown in Figure 7.12. As noted in the preceding
paragraphs the mean figure of merit curve falls below the mean of the -
individually calculated test points because of the non-linearity of the -
figure of merit function. Peak figure of merit for the baseline blade is
just under 0.80, and remains high out to the Cy obtainable at the power
1imit of the test rig. Note that a maximum value of Cy = .022 (Cy/oT = .22)
was reached at reduced tip speed.

Figure 7.13 presents the collective pitch vs. thrust relationship and shows
a change in slope between Cy values of 0.006 and 0.008. As will be shown,

consistent, repeatable Ct vs. 8_ 75 relationships were obtained for all the

ATB configurations and are considered to be reliable.

The plot of C13/2 versus Cp is sEown in Figure 7.14. The linear projection

to zero thrust gives a value of “P, equal to 0.000185 compared with a steel

blade value of 0.00013. Figure 7.?5 presents downwash distributions for the
baseline ATB.

7.3 Performance of ATB with Extended Cuff

The power-thrust relationship for the ATB with the trailing edge of the cuff
extended to complete the afrfoil section is shown in Figure 7.16. In Figure .
7.17 data is presented in figure of merit format. It is seen that the cuff
extension has an effect that increases the figure of merit by approximately
0.01. Figure 7.18 shows the variation of thrust coefficient with collective
pitch and Figure 7.19 preseets the variation of Cy3/2 as a function of power
coefficient. The value of “P, deduced from Figure 7.19 is the same as that
obtained from Figure 7.14 for the blade with a truncated cuff (0.000185).

7.4 Performance of ATB with No Cuff

As expected there was a significant reduction in rotor efficiency when the
cuff was removed. The results for the cuff-removed configuration are given
in Figures 7.20 through 7.23. A peak figure of merit around 0.77 was found,
and the “Py value 1s 0.000197. A run was made with the blade sweep angle
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FIGURE OF MERIT (FM)

NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH BASELINE ELLIPTICAL TIP
AND TRUNCATED CUFF

.84 -
v
v
v
v
v
Y v
.60
SYMBOL RUN reM V1ie Mrre Vwmwo
o 32 570.1 746.2 .663 0.9
.56 - o 33 570.7 747.1 .662 2.5
o 36 569.1 744.9 .661 2.0
o 3707 15-200571.4 748.0 .663 4.8
52 \v} 50(tr 3-12)561.0 734.4 .661 1.8
er Q500 40-49565,5 740.3 .661 1.4
® 5007 13-39500.5 655.2 .585 1.3
® 45(10 47-63)625.1 818.3 .731 1.3
NOTE: RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
a8 - ARE THE AVERAGED VALUES FOR EACH RUN.
POWER COEFFICIENT CORRECTED FOR WIND VELOCITY
AND DIRECTION.
.44 L [l L l 1 i i 1 i
.006 .008 .010 .012 .014 .016 .018 020  .022

ROTOR THRUST COEFFICIENT (CT)

Figure 7.12 Figure of Merit for Baseline ATB
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ROTOR THRUST COEFFICIENT (CT)

.022 1 NASA-AMES 0.A.R.F. TEST 910 , v
ATB ROTOR WITH BASELINE ELLIPTICAL TIP o
AND TRUNCATED CUFF v
v
.020 4+

0018 “

¥

.016 4

.014 -

L{

.012 1

010 +

.008 +
SYMBOL RUN oM V1ip Mrip Ywino
0 32 570.1746.2 .663 0.9
s 33 570.7 747.1 .662 2.5
o 36 569.1744.9 .661 2.0
o} 3700 15-200571,.4 748.0 .663 4.8
v/ 500 3-12) 561.0 734.4 .661 1.8
- Q500 40-19)565.5 740.3 .661 1.4
v 50(tp 13-39)500.5 655.2 .585 1.3
®  A5(1r 47-63)625.1 818.3 .731 1.3

RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
ARE THE AVERAGED VALUES FOR EACH RUN.

(8 L i ] e

8 12 16 20 24
COLLECTIVE PITCH (6 5)

Figure 7.13 Thrust Coefficient vs. Collective Pitch
for Baseline ATHB
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NASA-AMES 0.A.R.F. TEST 910

ATB ROTOR WITH BASELINE ELLIPTICAL TIP NOTE: SOLID SYMBOLS DENOTE DATA
AND TRUNCATED CUFF FROM ANGLE OF ATTACK PROBES

RADIAL STATION (r/R)

0 .2 .4 .6 . ) 1.2 1.4
0 | y A
SIDE
20 - —— OF
NACELLE

40 |-
v 60 |-
ot
D
[
o
S 80
d
=
X
W
<
=
Z
Z 100 |-
[an

120 |-

140

RUN 50 Z/R= 0.4 v \
TIP 'WIND

160 L SYM 661 Ip ReM MTIP

O .00866 7 561.2 .661 734.6 1.9
o .01242 9 560.9 .660 734.2
o .01647 11 560.5 .660 733.6
O .01859 12 560.1 .659 733.2
v .01917 49 564.5 .660 738.9

[OSINAS S N
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Figure 7.15 Distribution of Downwash Velocities for Various
Thrust Coefficients for Baseline ATB
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FIGURE OF MERIT (FM)

NASAAMES 0.A.R.F. TEST 910 .
ATE ROTOR WITH BASELINE ELLIPTICAL TIP
AND EXTENDED CUFF

.84 [~ SYMBOL RUN RPM Viip Mrip VWIND

o 55 563.9738.1 .663 2.2
(EST.)

NOTE: RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
ARE THE AVERAGED VALUES FOR EACH RUN.

A8 POWER COEFFICIENT CORRECTED FOR WIND VELOCITY
AND OIRECTION,

a8 L ] l ] | | 1 _
.006 .008 .010 .012 .014 .016 .018 .020

ROTOR THRUST COEFFICIENT (CT)

Figure 7.17 Figure of Merit for Baseline ATB with Extended Cuff
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NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH BASELINE ELLIPTICAL TIP

AND EXTENDED CUFF
symso. RUN ReM ‘Tie Mrie Vwino

.020 ¥
T o 55 563.9738.1 .663 2.2
(EST.)

.018 +

016 -

.014 4
-
S
| 0012 -
frif
[ ]
[ &)
w
[V
& .010
[ ]
’-—
[72]
2
=
[md
-4 .008"
o
—
e

.006 4

.004 4

0021 NOTE: RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY

ARE THE AVERAGED VALUES FOR EACH RUN.
L 1 1 ] g N
-4 0 4 8 12 16 20

COLLECTIVE PITCH (e 75)

Figure 7.18 Thrust Coefficient vs. Collactive Pitch
for Baseline ATB with Extended Cuff
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FIGURE OF MERIT (FM)

NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH BASELINE ELLIPTICAL TIP
AND NO CUFF

B4 cywgoL run meM '1ip Mrre Vwiwo
O 53 566.4 741.4 .661 2.9
5 54 566.0 740.9.661 3.2
.80 -

.56 -

NOTE: RUN 53, BLADE LAG ANGLE = 1°
RUN 54, BLADE LAG ANGLE = 0°

RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
ARE THE AVERAGED VALUES FOR EACH RUN.

A8 - POWER COEFFICIENT CORRECTED FOR WIND VELOCITY
AND DIRECTION.

1 | I | | 1 I J
.006 .008 .010 012 .014 .016 .018 .020

ROTOR THRUST COEFFICIENT (CT)

Figure 7.21 Figure of Merit for Baseline ATB with No Cuff
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NASA-AMES 0.A.R.F. TEST 910
ATB. ROTOR WITH BASELINE ELLIPTICAL TIP
AND NO CUFF

symgoL RUN RPM 'TIp MrIP

020 T o 53 566.4 741.4 .661 2.9
faY 54 566.0 740.9 .661 3.2
.018 T
016 T
0014 b ud
g
&
|
s .012 T
o
™
Y
V5]
S
TR o
[Va)
-
(=4
x
'—
S .08+
(=]
(=4
.006 4+
.004 T
NOTE: RUN 53, BLADE LAG ANGLE = 1°
ﬁ RUN 54, BLADE LAG ANGLE = 0°
002 4 RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
. ARE THE AVERAGED VALUES FOR EACH RUN,
L, ] 1 1 ] i |
-4 0 4 8 12 16 20

COLLECTIVE PITCH (@ )

Figure 7.22 Thrust Coefticient vs. Collective Pitch
tfor Baseline ATB with No Cuff
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set to zero degrees and there is an apparent increase of efficiency at this
setting. The apparent increase in efficiency is however, within the scatter
of earlier testing and is not considered to be significant.

Figure 7.22 indicates that the collective pitch required for a given Cy may
be less when the blade sweep/droop is reduced to zero. The control system
flexibility accounts for most of this difference. The recorded values of
collective reflect the control setting at the actuator input. Because of
the nose down pitching moments associated with blade sweep, the control
blade setting is less in this case by the amount of control flexibility
windup. At a nominal collective input of 16 degrees the difference between
the swept and non-swept conditions is estimated to be 0.82 degrees. Figure
7.22 indicates a difference of almost 2 degrees suggesting that some addi-
tional mechanism may be invoived.

7.5 Performance of ATB with Swept Tip and Extended Cuff

Test results for the ATB with the swept tip are shown in Figures 7.24, 25,
26 and 27.

The rate of growth of pitch 1ink loads was almost twice that for the base-
1ine tip and this restricted testing to a maximum Cy of .016 (compared with
Cr of 0.020 with the baseline tip at the same RPM). However at this value
ET the figure of merit (Figure 7.25) is 0.795 and is still trending
upward.

7.6 Performance of ATB with Square Tip and Extended Cuff

Test data with the square tip installed (and extended cuff) is given in Fig-
ures 7.28 through 7.31. There is a slight reduction in efficiency through-
out the C1 range compared with the baseline tip configuration.

7.7 Confiquration Performance Comparisons

Figures 7.32 through 7.42 summarize the comparative performance of the base-
1ine ATB and the XV-15 blades, and of the various ATB alternate
configurations.

Figure 7.32 shows that at values of Cr above .0125 the power required for
the ATB becomes progressively less than that for the XV-15 blades. Figure
7.33 shows the same information in figure of merit format. Figures 7.34 and
7.35 summarize the comparative behavior of the alternate tip configuration
and the XV-15 blades. Figures 7.36 and 7.37 summarize the comparative be-
haviors of the different cuff configurations.

It is seen that the baseline design elliptical tip outperforms the alterna-
tives although the trend for the swept tip suggests that it might be better
at Cy values beyond 0.016. The cuff comparisons clearly demonstrate that
extending the trailing edge of the cuff to form a full airfoil has a signi-
ficant beneficial effect on hover performance.
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FIGURE OF MERIT (FM)

.60

.48

NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH SWEPT TIP
AND EXTENDED CUFF

symso. RuN ReM ‘Tip Mrip Ywino

o 60 566.1741.0 .664 1.9
(EST.)

NOTE: Cy MAX LIMITED BY PITCH LINK LOADS

RPM, TIP SPEED, TIP MACH NO., ANO WIND VELQCITY
ARE THE AVERAGED VALUES FOR EACH RUN.

— POWER COEFFICIENT CORRECTED FOR WIND VELOCITY
AND DIRECTION.

.44

L L L L I L | | J
.006 .008 .010 .012 .014 016 ~ .018 .020

ROTOR THRUST COEFFICIENT (CT)

Figure 7.25 Figure of Merit for ATB with Swept Tip
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NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH SWEPT TIP
AND EXTENDED CUFF

020~ swoL run reM 'Tip Mrie Vuiwo
O 60 566.1741.0 .664 1.9
(EST.)
018+
016+
0014 T
-
e
~ .012 4
-
Ll
o
&
Ll
8 .010 -
'—-
[ val
]
[<<
F
« .008 4+
S
e
.006 +
.004 +
NOTE: CT MAX LIMITED BY PITCH LINK LOADS
RPM, TIP SPEED, TIP MACH NO., AND WIND VELOCITY
ARE THE AYERAGED VALUES FOR EACH RUN,
| | 1L | & }
0 4 8 12 16 20 24

COLLECTIVE PITCH (o ;)

Figure 7.26 Thrust Coefficient vs. Collective i’itch
for ATB with Swept Tip
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FIGURE OF MERIT (FM)

.84

.48

NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH SQUARE TIP
AND EXTENDED CUFF

syso. RN reM YTip Mrip Ywinp

o 62 565.9 740.8 ,661 2.8
o 63 571.0 747.5 .662 2.1

NOTE: RPM, TIP SPEED, TIP MACH NO., AMD WIND VELOCITY
ARE THE AVERAGED VALUES FOR EACH RUN.

POWER COEFFICIENT CORRECTED FOR WIND VELOCITY

AND DIRECTION.
L ] I ] | i | -
.006 .008 .010 .012 014 016 .018 .020

ROTOR THRUST COEFFICIENT (CT)

Figure 7.29 Figure of Merit for ATB with Square Tip
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ROTOR THRUST COEFFICIENT (CT)

.020 1

.018 h

.016

0014 -

012 1

.010 1

.008

.006 4

.004 -

NASA-AMES 0.A.R.F. TEST 910
ATB ROTOR WITH SQUARE TIP
AND EXTENDED CUFF

syvgoL RuN peM ‘Tip Mrip Yuin

o 62 565.9 740.8 .661 2.8
TaY 63 571.0 747.5 .662 2.1

.002
NOTE: RPM, TIP SPEED, TIP MACH MO., AND WIND VELOCITY
ARE THE AVERAGED YALUES FOR EACH RUN.
1 | | | ] | |
0 4 8 12 16 20 24

COLLECTIVE PITCH (8 ;5)

Figure 7.30 Thrust Coefticient vs. Collective Pitch

for ATB with Square Tip
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FIGURE OF MERIT (FM)

.80

.76

.64

.56

.48

BASELI{E ATB
- XV<15 -
\ — ™~
~N
reM V1re Mre Vwino
——— XV-15 METAL BLADE 585.3 766.2 .690 1.6
—— —— BASELINE ELLIPTICAL TIP 568.0 743.5 .662 2.2
- WITH TRUNCATED CUFF
— NOTE: RPM, VTIP’ AND MTIP ARE AVERAGED VALUES
FOR EACH CONFIGURATION
CORRECTED FOR WIND VELOCITY AND DIRECTION
L L | 1 1 | A1 J
.006  .008 010 .012  .0l4 016 018 .020

ROTOR THRUST COEFFICIENT (CT)

Figure 7.33 Comparison of Figure of Merit for XV-15 Metal Blade

and Baseline ATB as Measured on OARF
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ROTOR FIGURE OF MERIT {FM)

.84

.60

.48

ELLIPTICAL

Xv-15

SQUARE
, rev Vr1p Mrze Ywino
o XV-15 METAL BLADE (SOUARE TIP) 585.3 766.2 .690 1.6
—-— BASELINE ELLIPTICAL TIP WITH EXTENDED CUFF 563.9 738.1 63, 2.2
—--— SQUARE TIP WITH EXTENDED CUFF 568.5 744.2 .662 2.5
| ———— SWEPT TIP WITH EXTENDED CUFF 566.1 741.0 664 1.9
NOTE: RPM, VTIP’ AND MTIP ARE AVEPAGED VALUES
FOR EACH CONFIGURATION
CORRECTED FOR WIND VELOCITY AND DIRECTION
1 ] 1 { | | { |

.006 .008 .010 .012 .014 .016 .018 .020
ROTOR THRUST COEFFICIENT (CT)

Figure 7.35 Effect of Tip Shape on Figure of Merit for ATB with
Baseline Elliptical, Swept, and Square Tips vs.
XV-15 Metal Blade
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FIGURE OF MERIT (FM)

EXTE"Q&: © TRUNCATED

.56 )
RPM VTIP Mr1p VwInd
XV-15 METAL BLADE 585.3 766. .3 .690 1.6
52 | —— —— TRUNCATED (BASELINE) 568.0 743. 5 662 2.2
* —— = —— EXTENDED 563.9 738.1 (663) 2.2
— = — — =NO CUFF 566.2 741. 2 661 3.1
.48 - NOTE: RPM, Viro, AND Mp., ARE AVERAGED VALUES
FOR EACH CONFIGURATION
CORRECTED FOR WIND VELOCITY AND DIRECTION
.7 - - | | 1 | | S { ]
.006 .008 -.010 .012 .014 .016 .018 .020
ROTOR THRUST COEFFICIENT (CT)
Figure 7.37 Effect of Cuff on Figure of Merit for Baseline - ATB with

Elliptical Tip - Comparison of Truncated (Baseline),
Extended, and No Cuff vs. XV-15 Metal Blade
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SYMBOL RUN Vi 1y

(@) 65 2.2 BASELINE ELLIPTICAL TIP WITH EXTENDED CUFF
AN 56 3.2 v v v v
/X 56 3.6 v v v v
.0014 — O 60 1.9 SWEPT TIP WITH EXTENDED CUFF
v 61 40 v v v v
.0013 |- C; = .012 (CROSS-PLOT FROM Cy vs. Cp)
— SWEPT TIP
< O— 4 -
= /'
© ELLIPTICAL TIP
e
& .0011
(3]
[~ 4
Wl
3
[~
& .0010 [~
—_
e
.0009
-NOTE : VTIP’ MTIP’ VNIND’ AND RPM
ARE AVERAGED VALUES FOR EACH RUN
.0008 &=— :
L 1 1 | | 1 ]
720 740 760 780 VTIP 800 820 840

1 1 i 1 1 | 1 1

]
555 565 575 585 595RPM 605 615 625 635
!

1 1 | 1 1
.650 .670 .690 .710 .730 .750
Mr1p

Figure 7.38 Effect of Tip Shape on Cp vs. Vr;p. RPM, and Mt ,p-
Comparison of Baseline Elliptical Tip and Swept Tip
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020 -

018 +
.016 4
.014 4+
T 4
|t : ./ - T
& .01z r ELLIPTICAL TIP //y SQUARE TIP
S N
rel /\
i / SWEPT TIP
© 010 4+
'—
(2]
2
F
& 008 4
(=]
<
.006 + |
- rev Y1re Mrre Ve
563.9 738.1 .663 2.2
WITH EXTENDED CUFF (EST.)
-004 - SOUARE TIP WITH —— ——568.5 744.2 .662 2.5
EXTENDED CUFF
Y. 73 SWEPT TIP WITH ——— —566.1 741.0 .664 1.9
s / EXTENDED CUFF (EST.)
) / NOTE: RPM, Vpyp, Myp AND Vyrnp ARE AVERAGED VALUES
FOR EACH CONFIGURATION,
VALUES LISTED FOR SOUARE TIP ARE AVERAGES
L | 1 OF RUNS 62 LF\ND 63. i i O
-4 0 4 8 12 16 20 24
|  COLLECTIVE PITCH (6 4¢)
Figure 7.39 Effect of Tip Shape on Cy vs. Collective - Comparison of

Baseline ATB ErlliptlcaI”Tip. Swept and Square Tips
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DOWNWASH VELOCITY (FPS)

RADIAL STATION (r/R)

0 .2 4 6 .8 1.0 1.2 1.4
0 { i i [ | i
201 SIDE
-~ OF
NACELLE
s}
= \\

XV-15 METAL BLADE
C.= .00796

~

T\

120 BASELINE ATB WIT
ELLIPTICAL TIP AND

TRUNCATED CUFF
C= - 00866

20 -

S~ XV-15 METAL BLADE
CT' .01246

140 - BASELINE ATB WITH ELLIPTICAL TIP
AND TRUNCATED CUFF C.= .01242
160 - RN TP S oM M Vire Vwmwo

N

——— XV-15 METAL BLADE 25 16 .00796 585.9 690 771.5 2.9
25 22 .01246 585.5 .689 770.9 3.3

— — ATB ROTOR 50 7 .00866 561.2 .661 734.6 1.9
50 9 .01242 560.9 .660 734.2 2.2

Figure 7.42 Comparison of Downwash Distributions for
XV-15 Metal Blade and Baseline ATB Rotor
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In Figure 7.38 the effect of tip shape on power required is shown as a func-
tion of tip speed, RPM, and tip Mach number. A comparison is made between
the swept and the baseline elliptical planforms. The extended cuff config-
uration was used for this crossplot. At the normal operating RPM (nominally
565), and at maximum RPM (625), the elliptical tip maintains a slight advan-
tage at Cy = .0l12.

Figure 7.39 compares the baseline elliptical, swept, and square tips on a Ct
vs. collective basis. As in Figure 7.40, the extended cuff was used for this
plot. As expected, the baseline elliptical tip has slightly better perfor-
mance than the other tip configurations. ]

Figures 7.40 and 7.41 present the effect of tip shape and cuff configuration
on induced efficiency as a function of rotor thrust coefficient.

Figure 7.42 compares downwash distributions for the metal blade and the
baseline ATB at nearly similar thrust coefficients.

The photograph in Figure 7.43 show tip vortices for the elliptical tip with
the extended cuff configuration. (Compare with Figure 7.8).

7.8 Theory-Test Comparison

The predictions for the XV-15 metal blades and for the Advanced Technology
Blades are compared with measured performance in Figure 1.4. The figure of
merit is generally underestimated at high values of Cy. The predicted per-
formance of the XV-15 metal blades and the baseline A*B blades was calculated
using a current 1ifting-1ine/blade element program. The program, which cor-
relates well with low twist helicopter blades, appears to overestimate the
induced power for highly twisted propellers/rotors. Possible reasons for

the discrepancies are discussed in the following paragraphs.

7.8.1 Rotor Wake Mode!

Because over 70 percent of the power absorbed by a hovering rotor is wake-
induced, the successful prediction of performance depends on how well the
effects of the vortex wake are modelled. An accurate wake model is one in
which the strength and positions of the vortices forming the wake are cor-
rectly represented. The current wake model is semi-empirical and contains
many correction factors determined by correlation of the analysis with
measured helicopter rotor and prop-rotor performance. While the model
yields practical results in cases where the rotor geometry and operating
conditions are within the range of the empirical factors, extensions to
configurations outside the data base are less reliable. This semi-empirical
wake representation is outdated and is currently being replaced with a
modern wake representation based upon experimentally observed rotor wake
structures following Landgrebe, Kocurek, and Gray.

A comparison of the effect of the different wake representations on the
‘calculation of figure of merit for the ATB rotor is presented in Figure
7.44. With the current wake, the peak figure of merit level is underpre-
dicted and performance at Cy values greater than 0.009 1s also underpre-
dicted. When the empirical wake is replaced by the Kocurek wake model,
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prediction of peak figure of merit is improved. Note that neither module
predicts the high figures of merit at high thrust coefficients. Also shown
are the results of a blade element/momentum analysis (using the same airfoil -
data) which somewhat overpredicts the performance but yields a better over-
all shape for the curve.

Although there has been much work on experimentally observed rotor wake
structures for helicopter rotors, there have been no tests conducted spe-
cifically for highly twisted rotors or propellers. Some progress in this
direction was made during this test as described in sections 7.1 and 7.7.
Further detailed experiments using pressure instrumented blades and Tlasers
to measure the detailed wake structure should be conducted for representa-
tive rotors. These results can be mathematically modelled and incorporated
into suitable analysis techniques.

While the introduction of more realistic wake models may improve the pre-
diction techniques, other areas also require attention.

7.8.2 Airfoil Behavior at High Angles of Attack

Highly twisted tilt rotor blades operate in hover with the root sections at
or beyond stall angles of attack. Two-dimensional airfoil data obtained
from the wind tunnel usually does not define the post-stall 1ift, drag, and
pitching moment behavior because testing is rarely conducted beyond stall.
It has been shown by the OARF results and elsewhere that the root area can
influence rotor performance significantly. Additional test data both at
model and full scale is therefore required on representative airfoils at
high angles of attack to establish the basic shape of the post-stall be-
havior for the root section.

7.8.3 Spanwise Flow Effects

There is evidence that two-dimensional airfoil data is not entirely appli-
cable near the root of a rotating blade. Figure 7.45 from Reference 7
shows that propeller blade sections near the root appear to have extended
1ift-curves and higher lift-curve slopes than those obtained from two-
dimensional wind tunnel tests. The mechanism suggested for this improved
performance is boundary layer thinning arising from centrifugal spanwise
pumping and the effect of Coriolis forces on the boundary layer. Develop-
ment of a method to account for this effect is recommended and could be
conducted as part of the previously recommended experiments on pressure
instrumented blades.

8.0 ROTOR AND CONTROL SYSTEM LOADS

Rotor and control loads were continuously monitored throughout the hover
testing of the XV-15 Metal Blade and Advanced Technology Blades to ensure
that static and dynamic limits were not exceeded. In general, testing was
1imited by steady spindle flap bending at the extremes of the thrust range.
While oscillatory loads did not 1imit performance testing, it was necessary
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to use cyclic to control flapping and flap-induced loads to acceptable lev-
els. Even with cyclic control, transient bending loads frequently exceeded
the endurance 1imit of the hub yoke spindle necessitating frequent damage
counts to determine the percentage of spindle life used. (Total Tife used
did not exceed 5 per cent.)

The sign convention used in reporting the measured loads is as follows:

+ Flap Bending -- Compression in the blade upper surface
+ Chord Bending -- Compression in trailing edge
+ Pitch Link Load -- Consistent with blade torsion leading edge up

It should be noted that, in any given run, substantial scatter is present in
the Toads data because of cyclic adjustments and variations in wind direc-
tion and magnitude. However, although not ideal for correlation studies,
the data indicate general trends.

8.1 XV-15 Metal Blade

The rotor system, blades, hub, and controls were essentially the same as
previously tested on the Aero Propulsion Laboratory Whirl Stand at Wright-
Patterson Air Force Base and documented in Bell Helicopter Report No.
300-099-010 (CR 114626), Reference 4.

Figures 8.1 and 8.2 present a summary of the measured steady and oscillating
yoke spindle and pitch 1ink loads as a function of Cy. Comparing the data
from the previous testing at Wright-Patterson with the current Ames testing
does not indicate any significant differences in the measured loadings.

The upper end of the thrust range was generally limited by blade stall as
evidenced by an increase in rotor noise, a rapid increase in oscillatory
pitch 1ink loads, and difficulty in controlling gimbal angle. In the pre-
liminary run-ups, operation was limited by oscillatory loads in the hub yoke
spindle. Bending moment allowables initially imposed on the spindle for
this test, (¢ 20,000 in.1b, as compared to * 58,000 in.1b. in the previous
whirl test) were based on later knowledge of the endurance limits for the
titanium material and were routinely exceeded during spin-up and shut-down.
This limitation was overcome by utilizing an S-N curve for the spindle to
allow short time exceedance of the + 20,000 in.l1b. endurance 1imit. A run-
ning damage count was maintained to ensure safety of operation.

8.2 Baseline Advanced Technology Blade (ATB)

Figures 8.3 through 8.22 present a summary of the measured steady and oscil-
lating yoke spindle, pitch 1ink, and flap bending loads as a function of Cy
and RPM.
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A comparison of the ATB loads with the XV-15 Metal Blade loads indicates
that load trends are similar, with the greatest difference being in the os-
cillatory loads. This is to be expected since oscillatory loads are depen-
dent on wind conditions and cyclic control adjustments, and it was evident
that the the oscillatory loads were affected by these.

In general, the ATB blades were tested to significantly higher thrust
coefficients (Cy) than the metal blade without encountering any signs of
instability, flutter, or excessive loads. As expected the steady spindle
beam moments and steady pitch link loads were proportionately higher than
the metal blade for the same Cy due to the increased chord of the ATB.

Load trends with RPM followed expected patterns. For the same Cry
increasing the RPM increases blade thrust and blade loads.

8.3 Alternate Confiqurations: Advanced Technology Blade

Two alternate configurations had a notable effect on blade loads. These
were the 0.0 degrees blade sweep (the baseline has 1 degree sweep) and the
swept tip configurations. As expected there was an effect on steady pitch
link loads as shown in Figure 8.23. As noted in sections 7.5 and 7.7, the
swept tip performance data was following a trend which suggested that peak
performance might be better than the baseline ATB when pitch 1ink Toads
restricted the test before peak figure of merit was reached.

9.0 ACOUSTICS

Near-field and far-field noise levels were measured during the hover test
program. The near-field microphone Jocation represented a point on the
fuselage side of a typical tilt rotor in hover. The microphone location
simulates a point on a fuselage 8 ft aft (2.4 meters) and with 2 ft (0.6m)
radial clearance from the tip path plane. Far-field noise was recorded with
an array of microphones at 250 ft and 650 ft radius, at 0, 15, 30 and 45
degrees behind the rotor disc.

Figure 9.1 shows comparative XV-15 metal blade and ATB overall near-field
sound pressure levels as a function of rotor thrust. The ATB noise level is
approximately 2-3 dB lower than the metal biades over the normal operating
range.

Far-field noise data for the 15 degrees aft location is shown in Figurevg.z.
The ATB OASPL is approximately 5-6 dB lower than that from the XV-15 metal
blades.

These comparative trends are expected since the tip pressure loading is less
for the tapered, higher solidity ATB with its more even thrust distribution
over the span.

Table 9.1 summarizes runs during which acoustics data was acquired during
the OARF testing in 1984, This includes JVX isolated rotor runs as well as
XV-15 metal blades and ATB test runs. The acquisition and analysis of the
acoustics data from these tests was an Ames Research Center activity. Addi-
tional information may be obtained from Ames personnel (M.D. Maisel).
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10.0 CONCLUSIONS AND RECOMMENDATIONS °

10.1 Conclusions

Full scale rotor hover performance was obtained for the basic XV-15 rotor
and the Advanced Technology Blade (ATB). The following conclusions can be
drawn from the results: '

1. Accuracy and reliability of the performance data is very high as
shown by the low level of scatter in the data and repeatability
of data taken at different times. (See for example, Figure 7.11).

2. Both the ATB and the XV-15 rotors performed at levels signifi-
cantly better than anticipated from theoretical estimates.
Measured peak values of figure of merit were in the range 0.79 to
0.81 whereas predicted values did not exceed 0.79. Peak perfor-
mance occurred at higher values of Cr and did not drop off as
quickly as predicted (Figure 1.4).

3. The performance of the baseline XV-15 rotor is higher than that
measured during a previous test of the same blades on the WPAFB
whirl tower when corrected for tower blockage effects (Figure 7.2).

4. Of the three tip shapes tested on the ATB blades, the elliptical
tip outperformed a rectangular tip and a swept tip (Figure 7.35).
The swept tip and elliptical tips had the same solidity; the
solidity of the rectangular tip was slightly higher. However,
testing of the swept tip was curtailed but did indicate that its
performance might match or exceed that of the elliptical tip at
high thrust.

5. Testing of the ATB with no cuff, truncated cuff, and full cuff
showed that performance is improved as more blade area is added to
the cuff region (Figure 7.37).

6. A value of Cr/oT = .22 was reached with the ATB before loads
limited further testing (Figure 7.11). The corresponding value
for the XV-15 was .18, (Figure 7.1).

7. Comparison of the ATB and XV-15 blade loads indicates that load
trends are similar. The ATB blades were tested to significantly
higher thrust levels than the XV-15 without encountering any
instability, flutter, or excessive loads.

8. Acoustical measurements show (Figures 9.1 and 9.2) that the ATB
with the elliptical tips was 2-3 dB lower than the XV-15 metal
blades in the near-field and 5-6 dB lower in the far-field.
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10.2 Recommendations

1. A program of research should be fnitiated aimed at developing
better wake models for use in tilt rotor hover performance anal-
yses. The program would consist of experimentally determining the
wake vortex structure for different rotor operating conditions
(tip speed, collective) for representative blade planforms, twist
distributions, and number of blades. It would also be desirable
to make these measurements with blades having pressure instrumen-
tation so that the blade circulation distribution can be deter-
mined. The combination of blade circulation distribution and wake
geometry can then be used to derive wake models for use in hover
performance analyses.

2. There is a need to acquire a better understanding of behavior of
the thick root sections used on tilt rotor blades especially near
and beyond stall. A program of wind tunnel test and analysis to
define the stall and post-stall behavior should be initiated.

This would include two-dimensional testing as well as measurements
on the root sections of rotor blades.
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APPENDIX A - CORRECTIONS FOR EFFECTS OF WIND
A.1 Introduction

The XV-15 and ATB rotor diameters are 25 feet. The ATB rotor has a thrust-
weighted solidity of 0.10, the XV-15 rotor has a solidity of 0.089. The ro-
tor data was generally acquired in conditions where the ambient wind
velocity was not zero. A correction for the effect of wind is therefore
required to arrive at true hover performance. The method used to correct
for the effect of wind on hover performance is presented below.

A.2 Correction for Wind Effects

In a wind of speed V at an angle o to the rotor shaft, the rotor develops a
thrust T and a normal force NF. The rotor power is
Cp = CPPRO +p Cp cosa - ¢ CNF sing + k Vi CT (1)

where p = V/V1, V4 = vi/VT, v, is the mean induced velocity, and k is a
correction factor for the idedl induced velocity.

During the test the rotor was trimmed to zero flapping. The rotor balance
measured T and NF. Wind speed (V ) and direction (a) were measured by an
anemometer mounted at a height above the ground. Using Hoerner's recom-
mended model for the wind boundary layer, (Reference 8), it was determined
that if the anemometer were positioned at the same height as the hub, the
mean wind speed would be read. The effect of the wind can be calculated as
follows.

The power required to hover in zero wind conditions is:

¢

<t

€, =Cp  +k

Pu Pprg- M

H

Since CPpRo does not vary significantly with small changes in ambient wind
conditions, we may substitute for CPPRO from Equation (1).

The adjusted power for hover in zero wind may then be written:
kK Vv,

CPH = Cp -u (CT cosa - CNF sina) + kHViH [1 - " } cT (2)

HYiH
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The ratio v, = V4 / Vijy is obtained by solving
ved + 2 v, 3V, cosa SIGN C7 + v, 2 V,2 - 1=0 (3)

where V= V/v-;H

Equation (3) fis sdlved for V, by iteration using the Newton-Raphson method
Van+l = Veen = (F/F)n .
where F = v,4 + 2v, 3 V, cosa SIGN CT + v, 2 V,2 -1
F' = 4v,? + 6v,2 V, cosa SIGN Cy + 2v, Vil (4)

and a starting value is given by an approximation developed by Wayne Johnson,
viz

v, = 1 - pcosa/y2 lCTI = 1 - 0.5V, cosa )

Figure A.1 shows the induced velocity ratio (and ideal power ratio) for dif-
ferent wind speeds and directions for Ct = .015. The effect of not applying
a wind correction is shown in Figure A.z where true hover performance is
compared to that which would be calculated from measurements made in a 3
knot wind. The effect of the wind is substantial, amounting to approximate-
1y 2 points in figure of merit when the flow is axial.

On the basis of the above analysis the method for wind correction is:
1) Calculate v, using the full iterative quartic solution.
2) Calculate the hover power using equation (2). From estimated hover

performance the value of ky is 1.16. It is assumed that k = ky
since only very low advance ratios are involved.
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A.3 Data Reduction and Correction Procedure

The following are the steps in the data reduction and correction procedure.

1.

Record the main balance thrust (axial force), rolling moment
(friction torque), normal force and shaft torque. Record mean
wind speed (V) and direction (o).

Subtract the friction torque from the shaft torque to yield a true
rotor torgue.

Put data in coefficient form, Cr, Cp, etc.

Calculate the following:

(@) V, =V/ (V7 JTG172)

(b) v,=1- .5V, cosa

(c) F and F' from equation (4) _
(d) Van+l = Van - F/F

(e) A= - F/F'

If |al 2 .00001 set vop = Ven+] 90 to step (b) and iterate until
la] < .00001.

(f) set vy = Vap-1
Calculate the corrected hover power coefficient from

Cpy = Cp - p# (C1 cosa - Cnp sina) + ky (L1-vi) [Cyl3/2
vZ
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Figure A.2 Effect of Wind on Hover Performance
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Figure A.1 Effect of Wind on Induced Power

133




1. Report No. | 2. Government Accession Ne. 3. Recipient’s Cataiog No.
CR 177436

4. Title and Subtitie 6. Report Date
Hover Performance Tests Of Baseline Metal and October 1986
Advanced Technology Blade (ATB) Rotor Systems for 8. Performing Organization Code
the XV-15 Tilt Rotor Aircraft.

7. Authar(s) 8. Performing Organization Report No.
K. Bartie, H. Alexander, M. McVeigh, S. La Mon, D210-12380-1, N
and H. Bishop 10. Work Unit No.

9. Performing Organization Name and Address
Boeing Vertol Company 11. Contract or Grant No.

P.O. Box 16858
Philadelphia, Pennsylvania 19142 NAS2=11280
13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address FINAL
NASA/AMES RESEARCH CENTER 14. Sponsoring Agency Code
MOFFETT FIELD, CALIFORNIA 94035 . 505-61-51

15 Supplementary Notss
POINT OF CONTACT: TECHNICAL MONITOR, MARTIN D. MAISEL

M/S 237-5, NASA AMES RESEARCH CENTER
MOFFETT FIELD CA 94035 (415) 694-6372

s absract ¢ Rotor hover performance data were obtained for two full-scale rotor
systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor
employed the rectahgular planform metal blades (rotor solidity=0.089) which
were used on the initial flight configuration of the XV-15. The second
rotor configuration examined the non-linear taper, composite~-construction,
advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replacs
the metal blades on the XV-15. Variations of the baseline ATB tip and cuff
shapes were also tested.

A new six-component rotor force and moment balance designed to obtain highly
accurate data over a broad range of thrust and torque conditicns is describei

in the report. The test data are presented in non-dimensional coefficient
form for the performance results, and in dimensional form for the steady and
alternating loads. Some wake and acoustics data are alsc shown.

|

17. Key Words (Suggested by Authoris}) 18. Distribution Statement
ROTOR ROTOR LOADS UNLIMITED )
HOVER PERFORMANCE STATIC PERFORMANCE SUBJECT CATEGORY 05
TILT ROTOR - TEST -
Xxv-15
ROTOR BUADFE

19. Security Clasuf. (of this report} 20. Security Classif. (of this page) 21. No. of Pages 22. Price”
UNCLASSIFIED UNCLASSIFIED 151

*Eor sale by the National Technical Information Service, Springfieid, Virgims 22161






