3,915 research outputs found
Scatterometer Data Analysis program Final report, 1 Jun. 1968 - 31 May 1969
Evaluation and processing of scatterometer data for use in NASA Earth Resources Progra
The Interiors of Giant Planets: Models and Outstanding Questions
We know that giant planets played a crucial role in the making of our Solar
System. The discovery of giant planets orbiting other stars is a formidable
opportunity to learn more about these objects, what is their composition, how
various processes influence their structure and evolution, and most importantly
how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail,
mostly from close spacecraft flybys. We can infer that they are all enriched in
heavy elements compared to the Sun, with the relative global enrichments
increasing with distance to the Sun. We can also infer that they possess dense
cores of varied masses. The intercomparison of presently caracterised
extrasolar giant planets show that they are also mainly made of hydrogen and
helium, but that they either have significantly different amounts of heavy
elements, or have had different orbital evolutions, or both. Hence, many
questions remain and are to be answered for significant progresses on the
origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth
and Planetary Sciences, vol 33, (2005
Bulk Composition of GJ 1214b and other sub-Neptune exoplanets
GJ1214b stands out among the detected low-mass exoplanets, because it is, so
far, the only one amenable to transmission spectroscopy. Up to date there is no
consensus about the composition of its envelope although most studies suggest a
high molecular weight atmosphere. In particular, it is unclear if hydrogen and
helium are present or if the atmosphere is water dominated. Here, we present
results on the composition of the envelope obtained by using an internal
structure and evolutionary model to fit the mass and radius data. By examining
all possible mixtures of water and H/He, with the corresponding opacities, we
find that the bulk amount of H/He of GJ1214b is at most 7% by mass. In general,
we find the radius of warm sub-Neptunes to be most sensitive to the amount of
H/He. We note that all (Kepler-11b,c,d,f, Kepler-18b, Kepler-20b, 55Cnc-e,
Kepler-36c and Kepler-68b) but two (Kepler-11e and Kepler-30b) of the
discovered low-mass planets so far have less than 10% H/He. In fact, Kepler-11e
and Kepler-30b have 10-18% and 5-15% bulk H/He. Conversely, little can be
determined about the H2O or rocky content of sub-Neptune planets. We find that
although a 100% water composition fits the data for GJ1214b, based on formation
constraints the presence of heavier refractory material on this planet is
expected, and hence, so is a component lighter than water required. A robust
determination by transmission spectroscopy of the composition of the upper
atmosphere of GJ1214b will help determine the extent of compositional
segregation between the atmosphere and envelope.Comment: Updated the masses and radii of the Kepler-11 system, added
Kepler-30b as well in the analysis. Accepted in ApJ, 39 pages, 9 figure
A non-grey analytical model for irradiated atmospheres. II: Analytical vs. numerical solutions
The recent discovery and characterization of the diversity of the atmospheres
of exoplanets and brown dwarfs calls for the development of fast and accurate
analytical models. We quantify the accuracy of the analytical solution derived
in paper I for an irradiated, non-grey atmosphere by comparing it to a
state-of-the-art radiative transfer model. Then, using a grid of numerical
models, we calibrate the different coefficients of our analytical model for
irradiated solar-composition atmospheres of giant exoplanets and brown dwarfs.
We show that the so-called Eddington approximation used to solve the angular
dependency of the radiation field leads to relative errors of up to 5% on the
temperature profile. We show that for realistic non-grey planetary atmospheres,
the presence of a convective zone that extends to optical depths smaller than
unity can lead to changes in the radiative temperature profile on the order of
20% or more. When the convective zone is located at deeper levels (such as for
strongly irradiated hot Jupiters), its effect on the radiative atmosphere is
smaller. We show that the temperature inversion induced by a strong absorber in
the optical, such as TiO or VO is mainly due to non-grey thermal effects
reducing the ability of the upper atmosphere to cool down rather than an
enhanced absorption of the stellar light as previously thought.
Finally, we provide a functional form for the coefficients of our analytical
model for solar-composition giant exoplanets and brown dwarfs. This leads to
fully analytical pressure-temperature profiles for irradiated atmospheres with
a relative accuracy better than 10% for gravities between 2.5m/s^2 and 250
m/s^2 and effective temperatures between 100 K and 3000 K. This is a great
improvement over the commonly used Eddington boundary condition.Comment: Accepted in A&A, models are available at
http://www.oca.eu/parmentier/nongrey or in CD
On the Radii of Close-in Giant Planets
The recent discovery that the close-in extrasolar giant planet, HD209458b,
transits its star has provided a first-of-its-kind measurement of the planet's
radius and mass. In addition, there is a provocative detection of the light
reflected off of the giant planet, Boo b. Including the effects of
stellar irradiation, we estimate the general behavior of radius/age
trajectories for such planets and interpret the large measured radii of
HD209458b and Boo b in that context. We find that HD209458b must be a
hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is
not due to the thermal expansion of its atmosphere, but to the high residual
entropy that remains throughout its bulk by dint of its early proximity to a
luminous primary. The large stellar flux does not inflate the planet, but
retards its otherwise inexorable contraction from a more extended configuration
at birth. This implies either that such a planet was formed near its current
orbital distance or that it migrated in from larger distances (0.5 A.U.),
no later than a few times years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter
Spatiotemporal instability of a confined capillary jet
Recent experimental studies on the instability appearance of capillary jets
have revealed the capabilities of linear spatiotemporal instability analysis to
predict the parametrical map where steady jetting or dripping takes place. In
this work, we present an extensive analytical, numerical and experimental
analysis of confined capillary jets extending previous studies. We propose an
extended, accurate analytic model in the limit of low Reynolds flows, and
introduce a numerical scheme to predict the system response when the liquid
inertia is not negligible. Theoretical predictions show a remarkable accuracy
with results from the extensive experimental exploration provided.Comment: Submitted to the Physical Review E (20-March-2008
Effect of turbulence on collisions of dust particles with planetesimals in protoplanetary disks
Planetesimals in gaseous protoplanetary disks may grow by collecting dust
particles. Hydrodynamical studies show that small particles generally avoid
collisions with the planetesimals because they are entrained by the flow around
them. This occurs when , the Stokes number, defined as the ratio of the
dust stopping time to the planetesimal crossing time, becomes much smaller than
unity. However, these studies have been limited to the laminar case, whereas
these disks are believed to be turbulent. We want to estimate the influence of
gas turbulence on the dust-planetesimal collision rate and on the impact
speeds. We used three-dimensional direct numerical simulations of a fixed
sphere (planetesimal) facing a laminar and turbulent flow seeded with small
inertial particles (dust) subject to a Stokes drag. A no-slip boundary
condition on the planetesimal surface is modeled via a penalty method. We find
that turbulence can significantly increase the collision rate of dust particles
with planetesimals. For a high turbulence case (when the amplitude of turbulent
fluctuations is similar to the headwind velocity), we find that the collision
probability remains equal to the geometrical rate or even higher for , i.e., for dust sizes an order of magnitude smaller than in the laminar
case. We derive expressions to calculate impact probabilities as a function of
dust and planetesimal size and turbulent intensity
Hydrogen-Helium Mixtures in the Interiors of Giant Planets
Equilibrium properties of hydrogen-helium mixtures under conditions similar
to the interior of giant gas planets are studied by means of first principle
density functional molecular dynamics simulations. We investigate the molecular
and atomic fluid phase of hydrogen with and without the presence of helium for
densities between gcm and gcm and
temperatures from K to . Helium has a crucial influence on
the ionic and electronic structure of the liquid. Hydrogen molecule bonds are
shortened as well as strengthened which leads to more stable hydrogen molecules
compared to pure hydrogen for the same thermodynamic conditions. The {\it ab
initio} treatment of the mixture enables us to investigate the validity of the
widely used linear mixing approximation. We find deviations of up to 8% in
energy and volume from linear mixing at constant pressure in the region of
molecular dissociation.Comment: 13 pages, 18 figures, submitted to PR
The vibrational dynamics of vitreous silica: Classical force fields vs. first-principles
We compare the vibrational properties of model SiO_2 glasses generated by
molecular-dynamics simulations using the effective force field of van Beest et
al. (BKS) with those obtained when the BKS structure is relaxed using an ab
initio calculation in the framework of the density functional theory. We find
that this relaxation significantly improves the agreement of the density of
states with the experimental result. For frequencies between 14 and 26 THz the
nature of the vibrational modes as determined from the BKS model is very
different from the one from the ab initio calculation, showing that the
interpretation of the vibrational spectra in terms of calculations using
effective potentials can be very misleading.Comment: 7 pages of Latex, 4 figure
- …