10 research outputs found

    Exogenous Ether Lipids Predominantly Target Mitochondria

    Get PDF
    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking

    Identification of multiple integrin β1 homologs in zebrafish (Danio rerio)

    Get PDF
    BACKGROUND: Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish β1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two β1 paralogs (β1–1 and β1–2) that have a high degree of identity to other vertebrate β1 subunits. In addition, a third, more divergent, β1 paralog is present (β1–3), which may have altered ligand-binding properties. Zebrafish also have other divergent β1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with β1–3 these truncated forms comprise a novel group of β1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to β1–1 and β1–2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of β1–2 may have given rise to β1–3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated β1 paralogs appears to have taken place. The different zebrafish β1 paralogs have varied patterns of temporal expression during development. β1–1 and β1–2 are ubiquitously expressed in adult tissues, whereas the other β1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin β1 paralogs. β1–1 and β1–2 may share the roles of the solitary β1 subunit found in other vertebrates, whereas β1–3 and the truncated β1 paralogs may have acquired novel functions

    Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer

    No full text
    Bid is a BH3-only member of the Bcl-2 family that regulates cell death at the level of mitochondrial membranes. Bid appears to link the mitochondrial pathway with the death receptor-mediated pathway of cell death. It is generally assumed that the f.l. (full-length) protein becomes activated after proteolytic cleavage, especially by apical caspases like caspase 8. The cleaved protein then relocates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins that facilitate the release of apoptogenic proteins like cytochrome c. Although the major action may reside in the C-terminus part, tBid (cleaved Bid), un-cleaved Bid also has pro-apoptotic potential when ectopically expressed in cells or in vitro. This pro-apoptotic action of f.l. Bid has remained unexplained, especially at the biochemical level. In the present study, we show that f.l. (full-length) Bid can insert specific lysolipids into the membrane surface, thereby priming mitochondria for the release of apoptogenic factors. This is most effective for lysophosphatidylcholine species that we report to accumulate in mitochondria during apoptosis induction. A Bid mutant that is not pro-apoptotic in vivo is defective in lysophosphatidylcholine-mediated membrane perturbation in vitro. Our results thus provide a biochemical explanation for the pro-apoptotic action of f.l. Bid
    corecore