26 research outputs found

    Synthesis and evaluation of Fe3O4-impregnated activated carbon for dioxin removal

    Get PDF
    Polychlorinated dibenzo-p-dioxins and -furans (PCDD/PCDFs) are highly toxic organic pollutants in soils and sediments which persist over timescales that extend from decades to centuries. There is a growing need to develop effective technologies for remediating PCDD/Fs-contaminated soils and sediments to protect human and ecosystem health. The use of sorbent amendments to sequester PCDD/Fs has emerged as one promising technology. A synthesis method is described here to create a magnetic activated carbon composite (AC-Fe3O4) for dioxin removal and sampling that could be recovered from soils using magnetic separation. Six AC-Fe3O4 composites were evaluated (five granular ACs (GACs) and one fine-textured powder AC(PAC)) for their magnetization and ability to sequester dibenzo-p-dioxin (DD). Both GAC/PAC and GAC/PAC-Fe3O4 composites effectively removed DD from aqueous solution. The sorption affinity of DD for GAC-Fe3O4 was slightly reduced compared to GAC alone, which is attributed to the blocking of sorption sites. The magnetization of a GAC-Fe3O4 composite reached 5.38 emu/g based on SQUID results, allowing the adsorbent to be easily separated from aqueous solution using an external magnetic field. Similarly, a fine-textured PAC-Fe3O4 composite was synthesized with a magnetization of 9.3 emu/g

    Polarized ATR-FTIR Study of Smectite in Aqueous Suspension

    No full text

    ADSORPTION OF PROTAMINE AND PAPAIN PROTEINS ON SAPONITE

    No full text
    Due to the increased importance of bionanocomposites, protamine and papain proteins were adsorbed on Na+ and on Cs+-exchanged saponite from aqueous solution. protein analysis of equilibrium solutions and thermogravimetric analyses of biocomposites were used to prepare adsorption isotherms, Based on the isotherm shape, and on the amounts of protein adsorbed and the amounts of Na+ and Cs+ released, the initial protein sorption apparently was due to ion exchange. Additional sorbed protein was weakly retained and could be removed by washing with water. From ion exchange, the average charge of the protamine adsorbed was estimated to be +13.1 to +13.5, Similar papain measurements could not be made due to partial decomposition. Quantitatively, protamine was adsorbed at levels Lip to 400 mg/g on Na+-saponite and 200 mg/g on Cs+-saponite. The maximum protamine adsorption was 650 to 700 mg/g for Na+-saponite and 350-400 mg/g for Cs+-saponite. Protamine was sorbed to edge surfaces and the basal spacing of the interlamellar region of saponite was 1.75 nm. Protamine displaced only 36% of the Cs+ in Cs+-saponite and expanded the interlamellar region by 36% for a basal spacing of 1.6 nm. Papain sorption to Na+-saponite occurred by a two-step process: (1) adsorption to saponite particle external surfaces Followed, (2) by partial intercalation. Quantitatively, Papain was adsorbed up to 100 mg/g for Na+- and Cs+-saponite. Greater initial papain concentrations resulted in a 450 mg/g maximum for Na+-saponite, but no increase above 100 mg/g for Cs+-saponite. Papain apparently only sorbed to external Cs+-saponite Surfaces that were estimated to be 33-40 m(2)/g. Step-wisc thermal decomposition of the saponitc-protein composites occurred between 300 and 800 degrees C

    Interaction of Biological Molecules with Clay Minerals: A Combined Spectroscopic and Sorption Study of Lysozyme on Saponite

    No full text
    The interaction of hen egg white lysozyme (HEWL) with Na- and Cs-exchanged saponite was investigated using sorption, structural, and spectroscopic methods as a model system to study clay–protein interactions. HEWL sorption to Na- and Cs-saponite was determined using the bicinchoninic acid (BCA) assay, thermogravimetric analysis, and C and N analysis. For Na-saponite, the TGA and elemental analysis-derived sorption maximum was 600 mg/g corresponding to a surface coverage of 0.85 ng/mm<sup>2</sup> with HEWL occupying 526 m<sup>2</sup>/g based on a cross-sectional area of 13.5 nm<sup>2</sup>/molecule. HEWL sorption on Na-saponite was accompanied by the release of 9.5 Na<sup>+</sup> ions for every molecule of HEWL sorbed consistent with an ion exchange mechanism between the positively charged HEWL (IEP 11) and the negatively charged saponite surface. The <i>d</i>-spacing of the HEWL–Na-saponite complex increased to a value of 4.4 nm consistent with the crystallographic dimensions of HEWL of 3 × 3 × 4.5 nm. In the case of Cs-saponite, there was no evidence of interlayer sorption; however, sorption of HEWL to the “external” surface of Cs-saponite showed a high affinity isotherm. FTIR and Raman analysis of the amide I region of the HEWL–saponite films prepared from water and D<sub>2</sub>O showed little perturbation to the secondary structure of the protein. The overall hydrophilic nature of the HEWL–Na-saponite complex was determined by water vapor sorption measurements. The clay retained its hydrophilic character with a water content of 18% at high humidity corresponding to 240 H<sub>2</sub>O molecules per molecule of HEWL

    Impact of Intrinsic Structural Properties on the Hydration of 2:1 Layer Silicates

    No full text
    Several 2:1 layer silicates comprising di- and trioctahedral smectites of different layer charge between 0.2 and 0.4 per formula unit and a trioctahedral vermiculite were studied by an <i>in situ</i> method that allowed Fourier transform infrared spectroscopy (FTIR) spectra and water vapor sorption isotherms to be obtained simultaneously. The particle size and shape of the selected materials were determined using X-ray diffraction and gas adsorption analyses, which provided an estimate of the particle size with resulting edge site proportion. The aim of this study was to elucidate the hydration mechanism in 2:1 layer silicates during desorption and adsorption of water vapor. Domains in the desorption and adsorption of water vapor of the smectite samples with a slightly increasing slope were explained by a heterogeneous layer charge distribution, which enables the coexistence of different hydration states even under controlled conditions. Whereas hysteresis was observed over the entire isothermal range of the smectites, the isotherm of the vermiculite sample only showed hysteresis in the transition from the monohydrated state (1W) to the bihydrated state (2W). We also revealed that hysteresis is a function of the layer charge distribution, the achieved water content, and the particle size with resulting edge site contribution. Increasing the edge site proportions led to an increased hysteresis. The findings from the experimental FTIR/gravimetric analysis showed that the transition from 2W to 1W and backward is visible using infrared spectroscopy. The shifting of δ­(H–O–H) was influenced by the layer charge and octahedral substitutions. As a final point, we use water as a sensor molecule to describe the OH groups of the octahedral sheet and show that the observed shifts result from a change in the tilting angle. Our experimental results were supported by <i>ab initio</i> thermodynamic simulations that revealed the different shifting behavior of δ­(H–O–H) and δ­(M<sup><i>x</i>+</sup>–OH–N<sup><i>y</i>+</sup>) related to the differences in surface charge density and octahedral compositions

    Soilless plant growth media influence the efficacy of phytohormones and phytohormone inhibitors.

    No full text
    Plant growth regulators, such as hormones and their respective biosynthesis inhibitors, are effective tools to elucidate the physiological function of phytohormones in plants. A problem of chemical treatments, however, is the potential for interaction of the active compound with the growth media substrate. We studied the interaction and efficacy of propiconazole, a potent and specific inhibitor of brassinosteroid biosynthesis, with common soilless greenhouse growth media for rice, sorghum, and maize. Many of the tested growth media interacted with propiconazole reducing its efficacy up to a hundred fold. To determine the molecular interaction of inhibitors with media substrates, Fourier Transform Infrared Spectroscopy and sorption isotherm analysis was applied. While mica clay substrates absorbed up to 1.3 mg of propiconazole per g substrate, calcined clays bound up to 12 mg of propiconazole per g substrate. The efficacy of the gibberellic acid biosynthesis inhibitor, uniconazole, and the most active brassinosteroid, brassinolide, was impacted similarly by the respective substrates. Conversely, gibberellic acid showed no distinct growth response in different media. Our results suggest that the reduction in efficacy of propiconazole, uniconazole, and brassinolide in bioassays when grown in calcined clay is caused by hydrophobic interactions between the plant growth regulators and the growth media. This was further confirmed by experiments using methanol-water solvent mixes with higher hydrophobicity values, which reduce the interaction of propiconazole and calcined clay
    corecore