756 research outputs found

    Advanced User-Interaction with GUIs in MatLAB®

    Get PDF
    The advent of computer graphics and simulation software has strongly influenced the industrial design. Nowadays, when facing out the design of a new product or the re-design of an existing one it is of interest evaluating different design scenarios, by comparing physical and functional behaviors and product performances. Engineers are aimed to explore many and many "what-if" design scenarios for design optimization. The chapter focuses on two MatLAB®’s GUI applications, developed at University of Molise in collaboration with University of Naples (Italy): SVA-FEA (Statistical Variational Analysis & Finite Element Analysis) and PROMesh (PROcessing Mesh). The aim is to show how to provide advanced user interaction in several common tasks such as importing data, editing data, controlling FEA runs, visualizing results, and exporting results

    Expression of cyclooxygenase-1 and cyclooxygenase-2 in normal and pathological human oral mucosa.

    Get PDF
    Cyclooxigenase (COX) is the rate-limiting enzyme for the conversion of arachidonic acid (AA) to prostaglandins (PGs). Two isoforms of COX have been identified: COX-1 is constitutively expressed in many cells and is involved in cell homeostasis, angiogenesis and cell-cell signalling; COX-2 is not expressed in normal condition however it is strongly expressed in inflammation. The oral cavity is constantly exposed to physical and chemical trauma that could lead to mucosal reactions such as hyperplasia, dysplasia and cancer. Early diagnosis is the most important issue to address for a positive outcome of oral cancer; therefore it would be useful to identify molecular markers whose expression is associated with the various stages of oral cancer progression. Since COX enzyme has been involved, with different mechanisms, in the development and progression of malignancies we decided to investigate the expression and localization of COX-1 and COX-2 in normal human oral mucosa and three different pathologies (hyperplasia, dysplasia and carcinoma) by immunohistochemistry and RT-PCR. COX-1 mRNA and protein have been detected already in normal oral mucosa and their expression progressively increases from normal samples towards hyperplasia, dysplasia and finally carcinoma. On the contrary, COX-2 is not expressed in the normal tissue, starts to be expressed in hyperplasia, reaches the maximum activation in dysplasia and then starts to be downregulated in carcinoma

    Tissue-specific deregulation of selected HDACs characterizes ALS progression in mouse models: pharmacological characterization of SIRT1 and SIRT2 pathways

    Get PDF
    Acetylation homeostasis is thought to play a role in amyotrophic lateral sclerosis, and treatment with inhibitors of histone deacetylases has been considered a potential and attractive therapeutic approach, despite the lack of a thorough study of this class of proteins. In this study, we have considerably extended previous knowledge on the expression of 13 histone deacetylases in tissues (spinal cord and muscle) from mice carrying two different ALS-linked SOD1 mutations (G93A-SOD1 and G86R-SOD1). We have then focused on class III histone deacetylases SIRT1 and SIRT2 that are considered relevant in neurodegenerative diseases. SIRT1 decreases in the spinal cord, but increases in muscle during the progression of the disease, and a similar expression pattern is observed in the corresponding cell models (neuroblastoma and myoblasts). SIRT2 mRNA expression increases in the spinal cord in both G93A-SOD1 and G86R-SOD1 mice but protein expression is substantially unchanged in all the models examined. At variance with other sirtuin modulators (sirtinol, AGK2 and SRT1720), the well-known SIRT1 inhibitor Ex527 has positive effects on survival of neuronal cells expressing mutant SOD1, but this effect is neither mediated by SIRT1 inhibition nor by SIRT2 inhibition. These data call for caution in proposing sirtuin modulation as a target for treatment

    Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells.

    Get PDF
    Abstract Both leptin and vascular endothelial growth factor (VEGF) are growth and angiogenic cytokines that are upregulated in different types of cancer and have been implicated in neoplastic progression. Here we investigated the molecular mechanism by which leptin and VEGF expression are regulated in colon cancer by epidermal growth factor (EGF). In colon cancer cell line HT-29, EGF induced the binding of signal transducer and activator transcription 3 (STAT3) to STAT3 consensus motifs within the VEGF and leptin promoters and stimulated leptin and VEGF mRNA and protein synthesis. All these EGF effects were significantly blocked when HT-29 cells were treated with an inhibitor of the phosphoinositide 3-kinase (PI3K) pathway, LY294002, or with small interfering RNA (siRNA) targeting STAT3. Thus, our study identified the EGF/PI3K/STAT3 signaling as an essential pathway regulating VEGF and leptin expression in EGF-responsive colon cancer cells. This suggests that STAT3 pathways might constitute attractive pharmaceutical targets in colon cancer patients where anti-EGF receptor drugs are ineffective

    NKCC2 activity is inhibited by the Bartter's syndrome type 5 gain-of-function CaR-A843E mutant in renal cells.

    Get PDF
    The gain-of-function A843E mutation of the calcium sensing receptor (CaR) causes Bartter syndrome type 5. Patients carrying this CaR variant show a remarkably reduced renal NaCl reabsorption in the thick ascending limb (TAL) of Henle's loop resulting in renal loss of NaCl in the absence of mutations in renal Na(+) and Cl(-) ion transporters. The molecular mechanisms underlying this clinical phenotype are incompletely understood. We investigated, in human embryonic kidney 293 (HEK 293) cells and porcine kidney epithelial (LLC-PK1) cells, the functional cross-talk of CaR-A843E with the Na(+):K(+):2Cl(-) co-transporter, NKCC2, which provides NaCl reabsorption in the TAL. RESULTS: The expression of the CaR mutant did not alter the apical localisation of NKCC2 in LLC-PK1 cells. However, the steady-state NKCC2 phosphorylation and activity were decreased in cells transfected with CaR-A843E compared with the control wild-type CaR (CaR WT)-transfected cells. Of note, low-Cl(-)-dependent NKCC2 activation was also strongly inhibited upon the expression of CaR-A843E mutant. The use of either P450 ω-hydroxylase (CYP4)- or phospholipase A2 (PLA2)-blockers suggests that this effect is likely mediated by arachidonic acid (AA) metabolites. CONCLUSIONS: The data suggested that the activated CaR affects intracellular pathways modulating NKCC2 activity rather than NKCC2 intracellular trafficking in renal cells, and throw further light on the pathological role played by active CaR mutants in Bartter syndrome type 5

    Functional study of a KCNH2 mutant: Novel insights on the pathogenesis of the LQT2 syndrome

    Get PDF
    The K+ voltage-gated channel subfamily H member 2 (KCNH2) transports the rapid component of the cardiac delayed rectifying K+ current. The aim of this study was to characterize the biophysical properties of a C-terminus-truncated KCNH2 channel, G1006fs/49 causing long QT syndrome type II in heterozygous members of an Italian family. Mutant carriers underwent clinical workup, including 12-lead electrocardiogram, transthoracic echocardiography and 24-hour ECG recording. Electrophysiological experiments compared the biophysical properties of G1006fs/49 with those of KCNH2 both expressed either as homotetramers or as heterotetramers in HEK293 cells. Major findings of this work are as follows: (a) G1006fs/49 is functional at the plasma membrane even when co-expressed with KCNH2, (b) G1006fs/49 exerts a dominant-negative effect on KCNH2 conferring specific biophysical properties to the heterotetrameric channel such as a significant delay in the voltage-sensitive transition to the open state, faster kinetics of both inactivation and recovery from the inactivation and (c) the activation kinetics of the G1006fs/49 heterotetrameric channels is partially restored by a specific KCNH2 activator. The functional characterization of G1006fs/49 homo/heterotetramers provided crucial findings about the pathogenesis of LQTS type II in the mutant carriers, thus providing a new and potential pharmacological strategy

    Activation of the Thiazide-Sensitive Sodium-Chloride Cotransporter by Beta3-Adrenoreceptor in the Distal Convoluted Tubule

    Get PDF
    We previously showed that the beta-3 adrenergic receptor (BAR3) is expressed in most segments of the nephron where its agonism promotes a potent antidiuretic effect. We localized BAR3 in distal convoluted tubule (DCT) cells expressing the thiazide-sensitive sodium-chloride cotransporter (NCC). Aim of this study is to investigate the possible functional role of BAR3 on NCC modulation in DCT cells. Here, we found that, in mice, the knockout of BAR3 was paralleled by a significant attenuation of NCC phosphorylation, paralleled by reduced expression and activation of STE-20/SPS1-related proline-alanine-rich kinase (SPAK) and WNKs the main kinases involved in NCC activation. Conversely, in BAR1/2 knockout mice, we found reduced NCC abundance with no changes in the phosphorylation state of NCC. Moreover, selective BAR3 agonism promotes both SPAK and NCC activation in wild-type mouse kidney slices. In conclusion, our findings suggest a novel role for BAR3 in the regulation of NCC in DCT

    Role of PKC in the Regulation of the Human Kidney Chloride Channel ClC-Ka

    Get PDF
    The physiological role of the renal ClC-Ka/ClC-K1 channels is to confer a high Cl- permeability to the thin Ascending Limb of Henle (tAL), which in turn is essential for establishing the high osmolarity of the renal medulla that drives water reabsorption from collecting ducts. Here, we investigated by whole-cell patch-clamp measurements on HEK293 cells co-expressing ClC-Ka (tagged with GFP) and the accessory subunit barttin (tagged with m-Cherry) the effect of a natural diuretic extract from roots of Dandelion (DRE), and other compounds activating PKC, such as ATP, on ClC-Ka activity and its membrane localization. Treatment with 400 µg/ml DRE significantly inhibited Cl- currents time-dependently within several minutes. Of note, the same effect on Cl- currents was obtained upon treatment with 100 µM ATP. Pretreatment of cells with either the intracellular Ca2+ chelator BAPTA-AM (30 μM) or the PKC inhibitor Calphostin C (100 nM) reduced the inhibitory effect of DRE. Conversely, 1 µM of phorbol meristate acetate (PMA), a specific PKC activator, mimicked the inhibitory effect of DRE on ClC-Ka. Finally, we found that pretreatment with 30 µM Heclin, an E3 ubiquitin ligase inhibitor, did not revert DRE-induced Cl- current inhibition. In agreement with this, live-cell confocal analysis showed that DRE treatment did not induce ClC-Ka internalization. In conclusion, we demonstrate for the first time that the activity of ClC-Ka in renal cells could be significantly inhibited by the activation of PKC elicited by classical maneuvers, such as activation of purinergic receptors, or by exposure to herbal extracts that activates a PKC-dependent pathway. Overall, we provide both new information regarding the regulation of ClC-Ka and a proof-of-concept study for the use of DRE as new diuretic

    Pro-inflammatory cytokines as emerging molecular determinants in cardiolaminopathies

    Get PDF
    Mutations in Lamin A/C gene (lmna) cause a wide spectrum of cardiolaminopathies strictly associated with significant deterioration of the electrical and contractile function of the heart. Despite the continuous flow of biomedical evidence, linking cardiac inflammation to heart remodelling in patients harbouring lmna mutations is puzzling. Therefore, we profiled 30 serum cytokines/chemokines in patients belonging to four different families carrying pathogenic lmna mutations segregating with cardiac phenotypes at different stages of severity (n = 19) and in healthy subjects (n = 11). Regardless lmna mutation subtype, high levels of circulating granulocyte colony-stimulating factor (G-CSF) and interleukin 6 (IL-6) were found in all affected patients’ sera. In addition, elevated levels of Interleukins (IL) IL-1Ra, IL-1β IL-4, IL-5 and IL-8 and the granulocyte-macrophage colony-stimulating factor (GM-CSF) were measured in a large subset of patients associated with more aggressive clinical manifestations. Finally, the expression of the pro-inflammatory 70 kDa heat shock protein (Hsp70) was significantly increased in serum exosomes of patients harbouring the lmna mutation associated with the more severe phenotype. Overall, the identification of patient subsets with overactive or dysregulated myocardial inflammatory responses could represent an innovative diagnostic, prognostic and therapeutic tool against Lamin A/C cardiomyopathies
    • …
    corecore