65 research outputs found

    Cold-preservation of human adult hepatocytes for liver cell therapy

    Get PDF
    Hepatocyte transplantation is a promising alternative therapy for the treatment of hepatic failure, hepatocellular deficiency, and genetic metabolic disorders. Hypothermic preservation of isolated human hepatocytes is potentially a simple and convenient strategy to provide on-demand hepatocytes in sufficient quantity and of the quality required for biotherapy. In this study, first we assessed how cold storage in three clinically safe preservative solutions (UW, HTS-FRS, and IGL-1) affects the viability and in vitro functionality of human hepatocytes. Then we evaluated whether such cold-preserved human hepatocytes could engraft and repopulate damaged livers in a mouse model of liver failure. Human hepatocytes showed comparable viabilities after cold preservation in the three solutions. The ability of fresh and cold-stored hepatocytes to attach to a collagen substratum and to synthesize and secrete albumin, coagulation factor VII, and urea in the medium after 3 days in culture was also equally preserved. Cold-stored hepatocytes were then transplanted in the spleen of immunodeficient mice previously infected with adenoviruses containing a thymidine kinase construct and treated with a single dose of ganciclovir to induce liver injury. Engraftment and liver repopulation were monitored over time by measuring the blood level of human albumin and by assessing the expression of specific human hepatic mRNAs and proteins in the recipient livers by RT-PCR and immunohistochemistry, respectively. Our findings show that cold-stored human hepatocytes in IGL-1 and HTS-FRS preservative solutions can survive, engraft, and proliferate in a damaged mouse liver. These results demonstrate the usefulness of human hepatocyte hypothermic preservation for cell transplantation

    Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic influences on drug efficacy and tolerability are now widely known. Pharmacogenetics has thus become an expanding field with great potential for improving drug efficacy and reducing toxicity. Many pharmacologically-relevant polymorphisms do show variability among different populations. Knowledge of allelic frequency distribution within specified populations can be useful in explaining therapeutic failures, identifying potential risk groups for adverse drug reactions (ADRs) and optimising doses for therapeutic efficacy. We sought to determine the prevalence of clinically relevant Cytochrome P450 (<it>CYP) 2C8</it>, <it>CYP2C9</it>, and <it>CYP2C19 </it>variants in Ghanaians. We compared the data with other ethnic groups and further investigated intra country differences within the Ghanaian population to determine its value to pharmacogenetics studies.</p> <p>Methods</p> <p>RFLP assays were used to genotype <it>CYP2C8 </it>(<it>*2</it>, <it>*3</it>, <it>*4</it>) variant alleles in 204 unrelated Ghanaians. <it>CYP2C9*2 </it>and <it>CYP2C19 </it>(<it>*2 </it>and <it>*3</it>) variants were determined by single-tube tetra-primer assays while <it>CYP2C9 </it>(<it>*3, *4, *5 </it>and <it>*11</it>) variants were assessed by direct sequencing.</p> <p>Results</p> <p>Allelic frequencies were obtained for <it>CYP2C8*2 </it>(17%), <it>CYP2C8*3 </it>(0%), <it>CYP2C8*4 </it>(0%), <it>CYP2C9*2 </it>(0%), <it>CYP2C9*3 </it>(0%), <it>CYP2C9*4 </it>(0%), <it>CYP2C9</it>*5 (0%), <it>CYP2C9*11 </it>(2%), <it>CYP2C19*2 </it>(6%) and <it>CYP2C19*3 </it>(0%).</p> <p>Conclusion</p> <p>Allele frequency distributions for <it>CYP2C8</it>, <it>CYP2C9 </it>and <it>CYP2C19 </it>among the Ghanaian population are comparable to other African ethnic groups but significantly differ from Caucasian and Asian populations. Variant allele frequencies for <it>CYP2C9 </it>and <it>CYP2C19 </it>are reported for the first time among indigenous Ghanaian population.</p

    Comparison of Hepatic-like Cell Production from Human Embryonic Stem Cells and Adult Liver Progenitor Cells: CAR Transduction Activates a Battery of Detoxification Genes

    Get PDF
    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate

    p53-paralog DNp73 oncogene is repressed by IFNα/STAT2 through the recruitment of the Ezh2 polycomb group transcriptional repressor

    Get PDF
    The DNp73 proteins act as trans-repressors of p53 and p73-dependent transcription and exert both anti-apoptotic activity and pro-proliferative activity. DNp73s are frequently up-regulated in a variety of human cancers, including human hepatocellular carcinomas (HCCs). Increased levels of DNp73 proteins confer to HCC cells resistance to apoptosis and, irrespective to p53 status, a chemoresistant phenotype. Here, we show that interferon (IFN)α down-regulates DNp73 expression in primary human hepatocytes (PHHs) and HCC cell lines. IFNα has been used as pro-apoptotic agent in the treatment of malignancies and there is increasing evidence of IFNα effectiveness in HCC treatment and prevention of recurrence. The precise mechanisms by which class I IFNs exert their anti-proliferative and anti-tumor activity remain unclear. IFNα binding to its receptor activates multiple intracellular signaling cascades regulating the transcription of numerous direct target genes through the recruitment of a complex comprising of STAT1, STAT2 and IFN regulatory factor (IRF)9 to their promoters. We found that, in response to IFNα, the P2p73 promoter undergoes substantial chromatin remodeling. Histone deacetylases (HDACs) replace histone acetyl transferases. STAT2 is recruited onto the endogenous P2p73 promoter together with the polycomb group protein Ezh2, leading to increased H3K27 methylation and transcriptional repression. The reduction of DNp73 levels by IFNα is paralleled by an increased susceptibility to IFNα-triggered apoptosis of Huh7 hepatoma cells. Our results show, for the first time, that IFN-stimulated gene factor 3 recruitment may serve both in activating and repressing gene expression and identify the down-regulation of DNp73 as an additional mechanism to counteract the chemoresistance of liver cancer cells

    Dissecting the First Transcriptional Divergence During Human Embryonic Development

    Get PDF
    The trophoblast cell lineage is specified early at the blastocyst stage, leading to the emergence of the trophectoderm and the pluripotent cells of the inner cell mass. Using a double mRNA amplification technique and a comparison with transcriptome data on pluripotent stem cells, placenta, germinal and adult tissues, we report here some essential molecular features of the human mural trophectoderm. In addition to genes known for their role in placenta (CGA, PGF, ALPPL2 and ABCG2), human trophectoderm also strongly expressed Laminins, such as LAMA1, and the GAGE Cancer/Testis genes. The very high level of ABCG2 expression in trophectoderm, 7.9-fold higher than in placenta, suggests a major role of this gene in shielding the very early embryo from xenobiotics. Several genes, including CCKBR and DNMT3L, were specifically up-regulated only in trophectoderm, indicating that the trophoblast cell lineage shares with the germinal lineage a transient burst of DNMT3L expression. A trophectoderm core transcriptional regulatory circuitry formed by 13 tightly interconnected transcription factors (CEBPA, GATA2, GATA3, GCM1, KLF5, MAFK, MSX2, MXD1, PPARD, PPARG, PPP1R13L, TFAP2C and TP63), was found to be induced in trophectoderm and maintained in placenta. The induction of this network could be recapitulated in an in vitro trophoblast differentiation model

    The RSPO–LGR4/5–ZNRF3/RNF43 module controls liver zonation and size

    Get PDF
    LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/β-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/β-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/β-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/β-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/β-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4(+) hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO-LGR4/5-ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration

    Chromatin dynamics of gene activation and repression in response to interferon alpha (IFN(alpha)) reveal new roles for phosphorylated and unphosphorylated forms of the transcription factor STAT2

    No full text
    Signal transducer and activator of transcription 2 (STAT2), the critical component of type I interferons signaling, is a prototype latent cytoplasmic signal-dependent transcription factor. Activated tyrosine-phosphorylated STAT2 associates with STAT1 and IRF9 to bind the ISRE elements in the promoters of a subset of IFN-inducible genes (ISGs). In addition to activate hundreds of ISGs, IFN alpha also represses numerous target genes but the mechanistic basis for this dual effect and transcriptional repression is largely unknown. We investigated by ChIP-chip the binding dynamics of STAT2 and "active" phospho(P)-STAT2 on 113 putative IFN alpha direct target promoters before and after IFN alpha induction in Huh7 cells and primary human hepatocytes (PHH). STAT2 is already bound to 62% of our target promoters, including most "classical" ISGs, before IFN alpha treatment. 31% of STAT2 basally bound promoters also show P-STAT2 positivity. By correlating in vivo promoter occupancy with gene expression and changes in histone methylation marks we found that: 1) STAT2 plays a role in regulating ISGs expression, independently from its phosphorylation; 2) P-STAT2 is involved in ISGs repression; 3) "activated" ISGs are marked by H3K4me1 and H3K4me3 before IFN alpha; 4) "repressed" genes are marked by H3K27me3 and histone methylation plays a dominant role in driving IFN alpha-mediated ISGs repression
    corecore