284 research outputs found

    Many-body approach to low-lying collective excitations in a BEC approaching collapse

    Full text link
    An approximate many-body theory incorporating two-body correlations has been employed to calculate low-lying collective multipole frequencies in a Bose-Einstein condensate containing AA bosons, for different values of the interaction parameter λ=Aasaho\lambda=\frac{Aa_{s}}{a_{ho}}. Significant difference from the variational estimate of the Gross-Pitaevskii equation has been found near the collapse region. This is attributed to two-body correlations and finite range attraction of the realistic interatomic interaction. A large deviation from the hydrodynamic model is also seen for the second monopole breathing mode and the quadrupole mode for large positive λ\lambda.Comment: 8 pages, 2 figure

    Laser-induced Collisional Detachment

    Get PDF
    A theoretical study is presented of the process of photodetachment of a negative ion by sub-threshold-frequency radiation in the presence of a simultaneous collision. Calculations are carried out for the H−-He case and the resulting cross section is compared with other competing processes, such as two-photon photodetachment and nonradiative collisional detachment

    Resonant ion-pair formation in electron recombination with HF^+

    Full text link
    The cross section for resonant ion-pair formation in the collision of low-energy electrons with HF^+ is calculated by the solution of the time-dependent Schrodinger equation with multiple coupled states using a wave packet method. A diabatization procedure is proposed to obtain the electronic couplings between quasidiabatic potentials of ^1Sigma^+ symmetry for HF. By including these couplings between the neutral states, the cross section for ion-pair formation increases with about two orders of magnitude compared with the cross section for direct dissociation. Qualitative agreement with the measured cross section is obtained. The oscillations in the calculated cross section are analyzed. The cross section for ion-pair formation in electron recombination with DF^+ is calculated to determine the effect of isotopic substitution.Comment: 12 pages, 12 figure

    Ultracold collisions in tight harmonic traps: Quantum defect model and application to metastable helium atoms

    Full text link
    We analyze a system of two colliding ultracold atoms under strong harmonic confinement from the viewpoint of quantum defect theory and formulate a generalized self-consistent method for determining the allowed energies. We also present two highly efficient computational methods for determining the bound state energies and eigenfunctions of such systems. The perturbed harmonic oscillator problem is characterized by a long asymptotic region beyond the effective range of the interatomic potential. The first method, which is based on quantum defect theory and is an adaptation of a technique developed by one of the authors (GP) for highly excited states in a modified Coulomb potential, is very efficient for integrating through this outer region. The second method is a direct numerical solution of the radial Schr\"{o}dinger equation using a discrete variable representation of the kinetic energy operator and a scaled radial coordinate grid. The methods are applied to the case of trapped spin-polarized metastable helium atoms. The calculated eigenvalues agree very closely for the two methods, and with those computed self-consistently using the generalized self-consistent method.Comment: 11 pages,REVTEX, text substantially revised, title modifie

    A two-dimensional, two-electron model atom in a laser pulse: exact treatment, single active electron-analysis, time-dependent density functional theory, classical calculations, and non-sequential ionization

    Get PDF
    Owing to its numerical simplicity, a two-dimensional two-electron model atom, with each electron moving in one direction, is an ideal system to study non-perturbatively a fully correlated atom exposed to a laser field. Frequently made assumptions, such as the ``single active electron''- approach and calculational approximations, e.g. time dependent density functional theory or (semi-) classical techniques, can be tested. In this paper we examine the multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\ double ionization at lower field strengths as expected from a sequential, single active electron-point of view. Since we find non-sequential ionization also in purely classical simulations, we are able to clarify the mechanism behind this effect in terms of single particle trajectories. PACS Number(s): 32.80.RmComment: 10 pages, 16 figures (gzipped postscript), see also http://www.physik.tu-darmstadt.de/tqe

    On the absence of bound-state stabilization through short ultra-intense fields

    Get PDF
    We address the question of whether atomic bound states begin to stabilize in the short ultra-intense field limit. We provide a general theory of ionization probability and investigate its gauge invariance. For a wide range of potentials we find an upper and lower bound by non-perturbative methods, which clearly exclude the possibility that the ultra intense field might have a stabilizing effect on the atom. For short pulses we find almost complete ionization as the field strength increases.Comment: 34 pages Late

    Ionization dynamics in intense pulsed laser radiation. Effects of frequency chirping

    Full text link
    Via a non-perturbative method we study the population dynamics and photoelectron spectra of Cs atoms subject to intense chirped laser pulses, with gaussian beams. We include above threshold ionization spectral peaks. The frequency of the laser is near resonance with the 6s-7p transition. Dominant couplings are included exactly, weaker ones accounted for perturbatively. We calculate the relevant transition matrix elements, including spin-orbit coupling. The pulse is taken to be a hyperbolic secant in time and the chirping a hyperbolic tangent. This choice allows the equations of motions for the probability amplitudes to be solved analytically as a series expansion in the variable u=(tanh(pi t/tau)+1)/2, where tau is a measure of the pulse length. We find that the chirping changes the ionization dynamics and the photoelectron spectra noticeably, especially for longer pulses of the order of 10^4 a.u. The peaks shift and change in height, and interference effects between the 7p levels are enhanced or diminished according to the amount of chirping and its sign. The integrated ionization probability is not strongly affected.Comment: Accepted by J. Phys. B; 18 pages, 17 figures. Latex, uses ioplppt.sty, iopl10.sty and psfig.st

    On the Influence of Pulse Shapes on Ionization Probability

    Get PDF
    We investigate analytical expressions for the upper and lower bounds for the ionization probability through ultra-intense shortly pulsed laser radiation. We take several different pulse shapes into account, including in particular those with a smooth adiabatic turn-on and turn-off. For all situations for which our bounds are applicable we do not find any evidence for bound-state stabilization.Comment: 21 pages LateX, 10 figure

    Decay versus survival of a localized state subjected to harmonic forcing: exact results

    Full text link
    We investigate the survival probability of a localized 1-d quantum particle subjected to a time dependent potential of the form rU(x)sinωtrU(x)\sin{\omega t} with U(x)=2δ(xa)U(x)=2\delta (x-a) or U(x)=2δ(xa)2δ(x+a)U(x)= 2\delta(x-a)-2\delta (x+a). The particle is initially in a bound state produced by the binding potential 2δ(x)-2\delta (x). We prove that this probability goes to zero as tt\to\infty for almost all values of rr, ω\omega, and aa. The decay is initially exponential followed by a t3t^{-3} law if ω\omega is not close to resonances and rr is small; otherwise the exponential disappears and Fermi's golden rule fails. For exceptional sets of parameters r,ωr,\omega and aa the survival probability never decays to zero, corresponding to the Floquet operator having a bound state. We show similar behavior even in the absence of a binding potential: permitting a free particle to be trapped by harmonically oscillating delta function potential
    corecore