27,873 research outputs found
Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland
Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan
Deprojection technique for galaxy cluster considering point spread function
We present a new method for the analysis of Abell 1835 observed by
XMM-Newton. The method is a combination of the Direct Demodulation technique
and deprojection. We eliminate the effects of the point spread function (PSF)
with the Direct Demodulation technique. We then use a traditional depro-jection
technique to study the properties of Abell 1835. Compared to that of
deprojection method only, the central electron density derived from this method
increases by 30%, while the temperature profile is similar.Comment: accepted for publication in Sciences in China -- G, the Black Hole
special issu
SPSA-Based Tracking Method for Single-Channel-Receiver Array
A novel tracking method in the phased antenna array with a single-channel receiver for the moving signal source is presented in this paper. And the problems of the direction-of-arrival track and beamforming in the array system are converted to the power maximization of received signal in the free-interference conditions, which is different from the existing algorithms that maximize the signal to interference and noise ratio. The proposed tracking method reaches the global optimum rather than local by injecting the extra noise terms into the gradient estimation. The antenna beam can be steered to coincide with the direction of the moving source fast and accurately by perturbing the output of the phase shifters during motion, due to the high efficiency and easy implementation of the proposed beamforming algorithm based on the simultaneous perturbation stochastic approximation (SPSA). Computer simulations verify that the proposed tracking scheme is robust and effective
Probing viscoelastic properties of a thin polymer film sheared between a beads layer and quartz crystal resonator
We report measurements of viscoelastic properties of thin polymer films of
10-100 nm at the MHz range. These thin films are confined between a quartz
crystal resonator and a millimetric bead layer, producing an increase of both
resonance frequency and dissipation of the quartz resonator. The shear modulus
and dynamic viscosity of thin films extracted from these measurements are
consistent with the bulk values of the polymer. This modified quartz resonator
provides an easily realizable and effective tool for probing the rheological
properties of thin films at ambient environment.Comment: submitted to ap
Princess and the Pea at the nanoscale: Wrinkling and delamination of graphene on nanoparticles
Thin membranes exhibit complex responses to external forces or geometrical
constraints. A familiar example is the wrinkling, exhibited by human skin,
plant leaves, and fabrics, resulting from the relative ease of bending versus
stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest
known membrane, deposited on a silica substrate decorated with silica
nanoparticles. At small nanoparticle density monolayer graphene adheres to the
substrate, detached only in small regions around the nanoparticles. With
increasing nanoparticle density, we observe the formation of wrinkles which
connect nanoparticles. Above a critical nanoparticle density, the wrinkles form
a percolating network through the sample. As the graphene membrane is made
thicker, global delamination from the substrate is observed. The observations
can be well understood within a continuum elastic model and have important
implications for strain-engineering the electronic properties of graphene.Comment: 11 pages, 8 figures. Accepted for publication in Physical Review
Free charges versus excitons: photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts
InGaN/GaN multiple quantum well (MQW) nanorods have demonstrated significantly improved optical and electronic properties compared to their planar counterparts. However, the exact nature of the processes whereby nanorod structures impact the optical properties of quantum wells is not well understood, even though a variety of mechanisms have been proposed. We performed nanoscale spatially resolved, steady-state, and time-resolved photoluminescence (PL) experiments confirming that photoexcited electrons and holes are strongly bound by Coulomb interactions (i.e., excitons) in planar MQWs due to the large exciton binding energy in InGaN quantum wells. In contrast, free electron–hole recombination becomes the dominant mechanism in nanorods, which is ascribed to efficient exciton dissociation. The nanorod sidewall provides an effective pathway for exciton dissociation that significantly improves the optical performance of InGaN/GaN MQWs. We also confirm that surface treatment of nanorod sidewalls has an impact on exciton dissociation. Our results provide new insights into excitonic and charge carrier dynamics of quantum confined materials as well as the influence of surface states
Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class
The probability P(alpha, N) that search algorithms for random Satisfiability
problems successfully find a solution is studied as a function of the ratio
alpha of constraints per variable and the number N of variables. P is shown to
be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and
exponentially small in N above. The critical behaviour is universal for all
algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon)
alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to
the critical behaviour of random graphs, and the scaling function Phi is
exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure
- …