76,474 research outputs found

    Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires

    Full text link
    It is found that all the zigzag chains except the nonmagnetic (NM) Ni and antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look like a corner-sharing triangle ribbon, and have a lower total energy than the corresponding linear chains. All the 3d transition metals in both linear and zigzag structures have a stable or metastable ferromagnetic (FM) state. The electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and Ni linear chains is close to 90% or above. In the zigzag structure, the AF state is more stable than the FM state only in the Cr chain. It is found that the shape anisotropy energy may be comparable to the electronic one and always prefers the axial magnetization in both the linear and zigzag structures. In the zigzag chains, there is also a pronounced shape anisotropy in the plane perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is a spin-reorientation transition in the FM Fe and Co linear chains when the chains are compressed or elongated. Large orbital magnetic moment is found in the FM Fe, Co and Ni linear chains

    Static dielectric response and Born effective charge of BN nanotubes from {\it ab initio} finite electric field calculations

    Full text link
    {\it Ab initio} investigations of the full static dielectric response and Born effective charge of BN nanotubes (BN-NTs) have been performed for the first time using finite electric field method. It is found that the ionic contribution to the static dielectric response of BN-NTs is substantial and also that a pronounced chirality-dependent oscillation is superimposed on the otherwise linear relation between the longitudinal electric polarizability and the tube diameter (DD), as for a thin dielectric cylinderical shell. In contrast, the transverse dielectric response of the BN-NTs resemble the behavior of a thin (non-ideal) conducting cylindrical shell of a diameter of D+4D+4\AA , with a screening factor of 2 for the inner electric field. The medium principal component ZyZ_y^* of the Born effective charge corresponding to the transverse atomic displacement tangential to the BN-NT surface, has a pronounced DD-dependence (but independent of chirality), while the large longitudinal component ZzZ_z^* exhibits a clear chirality dependence (but nearly DD-independent), suggesting a powerful way to characterize the diameter and chirality of a BN-NT.Comment: submitted to PR

    Top-N Recommendation on Graphs

    Full text link
    Recommender systems play an increasingly important role in online applications to help users find what they need or prefer. Collaborative filtering algorithms that generate predictions by analyzing the user-item rating matrix perform poorly when the matrix is sparse. To alleviate this problem, this paper proposes a simple recommendation algorithm that fully exploits the similarity information among users and items and intrinsic structural information of the user-item matrix. The proposed method constructs a new representation which preserves affinity and structure information in the user-item rating matrix and then performs recommendation task. To capture proximity information about users and items, two graphs are constructed. Manifold learning idea is used to constrain the new representation to be smooth on these graphs, so as to enforce users and item proximities. Our model is formulated as a convex optimization problem, for which we need to solve the well-known Sylvester equation only. We carry out extensive empirical evaluations on six benchmark datasets to show the effectiveness of this approach.Comment: CIKM 201

    Variation in actual relationship among descendants of inbred individuals

    Get PDF
    In previous analyses, the variation in actual, or realized, relationship has been derived as a function of map length of chromosomes and type of relationship, the variation being greater the shorter the total chromosome length and the coefficient of variation being greater the more distant the relationship. Here, the results are extended to allow for the relatives' ancestor being inbred. Inbreeding of a parent reduces variation in actual relationship among its offspring, by an amount that depends on the inbreeding level and the type of mating that led to that level. For descendants of full-sibs, the variation is reduced in later generations, but for descendants of half-sibs, it is increased

    Intrinsic spin Hall effect in platinum metal

    Full text link
    Spin Hall effect in metallic Pt is studied with first-principles relativistic band calculations. It is found that intrinsic spin Hall conductivity (SHC) is as large as 2000(/e)(Ωcm)1\sim 2000 (\hbar/e)(\Omega {\rm cm})^{-1} at low temperature, and decreases down to 200(/e)(Ωcm)1\sim 200 (\hbar/e)(\Omega {\rm cm})^{-1} at room temperature. It is due to the resonant contribution from the spin-orbit splitting of the doubly degenerated dd-bands at high-symmetry LL and XX points near the Fermi level. By modeling these near degeneracies by effective Hamiltonian, we show that SHC has a peak near the Fermi energy and that the vertex correction due to impurity scattering vanishes. We therefore argue that the large spin Hall effect observed experimentally in platinum is of intrinsic nature.Comment: Accepted for publication in Phys. Rev. Let

    Plasmon assisted transmission of high dimensional orbital angular momentum entangled state

    Full text link
    We present an experimental evidence that high dimensional orbital angular momentum entanglement of a pair of photons can be survived after a photon-plasmon-photon conversion. The information of spatial modes can be coherently transmitted by surface plasmons. This experiment primarily studies the high dimensional entangled systems based on surface plasmon with subwavelength structures. It maybe useful in the investigation of spatial mode properties of surface plasmon assisted transmission through subwavelength hole arrays.Comment: 7 pages,6 figure

    Entanglement changing power of two-qubit unitary operations

    Full text link
    We consider a two-qubit unitary operation along with arbitrary local unitary operations acts on a two-qubit pure state, whose entanglement is C_0. We give the conditions that the final state can be maximally entangled and be non-entangled. When the final state can not be maximally entangled, we give the maximal entanglement C_max it can reach. When the final state can not be non-entangled, we give the minimal entanglement C_min it can reach. We think C_max and C_min represent the entanglement changing power of two-qubit unitary operations. According to this power we define an order of gates.Comment: 11 page

    Remote polarization entanglement generation by local dephasing and frequency upconversion

    Full text link
    We introduce a scheme for remote entanglement generation for the photon polarization. The technique is based on transferring the initial frequency correlations to specific polarization-frequency correlations by local dephasing and their subsequent removal by frequency up-conversion. On fundamental level, our theoretical results show how to create and transfer entanglement, to particles which never interact, by means of local operations. This possibility stems from the multi-path interference and its control in frequency space. For applications, the developed techniques and results allow for the remote generation of entanglement with distant parties without Bell state measurements and opens the perspective to probe frequency-frequency entanglement by measuring the polarization state of the photons.Comment: 8 page

    Evidence for very strong electron-phonon coupling in YBa_{2}Cu_{3}O_{6}

    Full text link
    From the observed oxygen-isotope shift of the mid-infrared two-magnon absorption peak of YBa2_{2}Cu3_{3}O6_{6}, we evaluate the oxygen-isotope effect on the in-plane antiferromagnetic exchange energy JJ. The exchange energy JJ in YBa2_{2}Cu3_{3}O6_{6} is found to decrease by about 0.9% upon replacing 16^{16}O by 18^{18}O, which is slightly larger than that (0.6%) in La2_{2}CuO4_{4}. From the oxygen-isotope effects, we determine the lower limit of the polaron binding energy, which is about 1.7 eV for YBa2_{2}Cu3_{3}O6_{6} and 1.5 eV for La2_{2}CuO4_{4}, in quantitative agreement with angle-resolved photoemission data, optical conductivity data, and the parameter-free theoretical estimate. The large polaron binding energies in the insulating parent compounds suggest that electron-phonon coupling should also be strong in doped superconducting cuprates and may play an essential role in high-temperature superconductivity.Comment: 4 pages, 1 figur

    Snyder's Quantized Space-time and De Sitter Special Relativity

    Full text link
    There is a one-to-one correspondence between Snyder's model in de Sitter space of momenta and the \dS-invariant special relativity. This indicates that physics at the Planck length P\ell_P and the scale R=3/ΛR=3/\Lambda should be dual to each other and there is in-between gravity of local \dS-invariance characterized by a dimensionless coupling constant g=P/R1061g=\ell_P/R\sim 10^{-61}.Comment: 8 page
    corecore