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Summary

In previous analyses, the variation in actual, or realized, relationship has been derived as a function of map
length of chromosomes and type of relationship, the variation being greater the shorter the total chromosome
length and the coefficient of variation being greater the more distant the relationship. Here, the results are
extended to allow for the relatives’ ancestor being inbred. Inbreeding of a parent reduces variation in actual
relationship among its offspring, by an amount that depends on the inbreeding level and the type of mating that
led to that level. For descendants of full-sibs, the variation is reduced in later generations, but for descendants of
half-sibs, it is increased.

1. Introduction

Measures of relationship specify the probabilities
that relatives share alleles identical by descent (ibd),
with the actual or realized identity at individual loci
binomially distributed due to Mendelian segregation.
At individual loci, the actual identity by descent
is binomially distributed, but because of the linkage,
there are covariances in this quantity among loci ;
therefore, there is still variation in the proportion of
alleles-shared ibd and hence in the actual or realized
relationship, even assuming infinitely many genomic
sites. In previous papers, formulae for this variance
have been obtained (Stam, 1980; Hill, 1993a, b ; Guo,
1995; Visscher, 2009) and have recently been general-
ized to cover all relationships (Hill & Weir, 2011,
subsequently HW11). In the previous analyses, an-
cestors were assumed not to be inbred; although
formulae for variation in the actual inbreeding have
been obtained by adapting those for variation in re-
lationship (HW11).

The magnitude of the variation in actual relation-
ship is important in several contexts, discussed further
by HW11. These include the need to allow for re-
lationship in genomic data cleaning and in association

studies (Laurie et al., 2010) and the ability to assess
the pedigree relationship using genome sharing rather
than just genotypes at individual loci, thereby incor-
porating the correlation structure induced by linkage.
In quantitative genetic applications, the accuracy
of prediction of breeding values in genomic selection
programmes (Meuwissen et al., 2001) and of esti-
mation of quantitative genetic parameters from vari-
ation within families (Visscher et al., 2006) depend on
the variation in actual relationship.

Partially inbred individuals are found in all popu-
lations, arising from matings of close relatives such
as full-sibs, more distant ones such as second cousins,
and innumerable complex situations. Data from
dense SNP markers and sequencing enable shared
identity of genomic regions of individuals to be estab-
lished (Weir et al., 2006). For example, inbred individ-
uals are found in some of the GENEVA consortium
data being used in human genome-wide association
studies (Cornelis et al., 2010), from which variation
in actual relationship has been demonstrated (Laurie
et al., 2010; HW11). Among pairs of individuals
with the same pedigrees, there can be considerable
variation in the estimates of the proportions of loci at
which they share zero, one or two pairs of alleles ibd.
In addition to the non-zero levels of inbreeding found
in natural populations, deliberate inbreeding is un-
dertaken in some breeding programmes. We now ex-
tend the results on variation in identity states
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obtained for non-inbred ancestors to those where the
common ancestors of relatives are inbred.

The notation and methodology used here are based
heavily on that used previously (HW11). Basically,
the probability that descendants each carry identical
alleles at a pair of linked loci is computed dependent
on the relationship among the parents. The excess of
this probability over that assuming loci are unlinked
provides an estimate of the covariance that single sites
carry identical alleles, and integrating this covariance
over all pairs of sites provides the variance of actual
identity. The analysis is extended here to include the
probability that the parent or parents share alleles at
pairs of linked loci as a consequence of their related-
ness and the inbreeding of their common ancestors.

2. Measures of identity by descent

The inbreeding coefficient FX, the probability of ibd
alleles at a locus, of an individual X in a pedigree is
known to follow from the path-counting equation
g(1/2)thA ;A where t is the number of individuals in a
pedigree loop linking the individual’s parents to their
common ancestor A, and hA ;A is the coancestry of A
with itself : the probability that two alleles transmitted
by that individual are ibd. This coancestry is given by
hA ;A=(1+FA)/2, where FA is the inbreeding coef-
ficient of A. The count t includes the two parents but
excludes the common ancestor, the factor 1/2 is for
the passage of an allele through each individual in the
pedigree loop, and the sum is over all distinct loops to
A and over all common ancestors A.

For two loci, with recombination rate c between
them, the path-counting equation for the probability
of X receiving alleles ibd at each locus, through
transmission of the ibd segments including both loci,
is [(1xc)/2]thA ;A* (c) where hA ;A* (c) is the two-locus
coancestry for A with itself. This has value

hA;A* (c)=FA+b[1x2FA+FA* (c)], (1)

where b=[(1xc)2+c2]/2, as shown in Table 1 (Weir
& Cockerham, 1969). Here, FA* (c) is the two-locus

inbreeding coefficient, or the probability that A
has ibd alleles at both loci. Note that when the
loci are completely linked, c=0 (b=1/2), F*A(0)=FA

and hA;A* (0)=hA ;A. When the loci segregate
independently, c=1/2 (b=1/4), F*A(1/2)=F2

A and hA ;A*

(1/2)=hA ;A
2 .

The inbreeding coefficient of an individual is also
the coancestry of its parents, so if X has parents V1,
V2 (e.g. Figs 1 and 2) then FX=hV1 ;V2. Although these
two quantities are equal, they have different reference
points : the coancestries h, h* are for alleles on ga-
metes transmitted by individuals, whereas the in-
breeding coefficients F, F* are for alleles on gametes
received by an individual, i.e. on gametes within an
individual. There is need for this last perspective for
more than one individual : yY1 ;Y2 or yY1 ;Y2* (c) are the
probabilities of ibd for alleles at one or two loci on
gametes received by individuals Y1 and Y2. Clearly,
FX=yX ;X. The same path-counting equations hold
for yY1 ;Y2 as for hY1 ;Y2, but the count t then excludes
Y1 and Y2.

(i) Inbred individual examples

Consider an inbred individual X, the offspring of a
mating of half-sibs V1 and V2 who have common
parent U2 (Fig. 1). The probability for alleles at any
locus of X being ibd is the inbreeding coefficient
FX=1/8, and the variance in actual inbreeding

Table 1. Two-locus coancestry# hA ;A* (c) of individual A with itself as a function of the one- and two-locus
inbreeding coefficients FA and FA* (c) of A. Individual A has genotype mimj/pipj at loci i, j.

hA ;A* (c)

Second gamete from A

Pr(mimj)=1xc
2

Pr(mipj)= c
2

Pr(pimj)= c
2

Pr(pipj)= 1xc
2

Frist gamete from A Pr(mimj)= 1xc
2

1 FA FA F *A (c)

Pr(mipj)= c
2

FA 1 F *A (c) FA

Pr(pimj)= c
2

FA F *A (c) 1 FA

Pr(pimj)= 1xc
2

F *A (c) FA FA 1

#The probability that two gametes from A carry identical by descent (ibd) alleles at both loci.

U1 U2 U3

V 1 V2

X

Y1 Y2

Fig. 1. Pedigree for HS offspring Y1,Y2 of individual X,
the offspring of HS parents.
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among independent loci is FX(1xFX)=7/64. For a
recombination fraction between these sites of c, the
two-locus inbreeding coefficient of X is given by
F*X(c)=(1xc)2b/4 (Table 2), which reduces to 1/8
when c=0 and to 1/64 when c=1/2, i.e. FX and F 2

X,
respectively. This argument is fairly easy to see be-
cause the probability of ibd for an individual at both
sites is the same as the probability that two random
haplotypes, sampled one from each parent, are ibd.
Therefore, in this case where parents V1 and V2
are half-sibs, it is the probability that a pair of half-
cousins, one with parent V1 and one with parent V2,
share identical alleles at the two loci (HW11, Table 2).
Weir & Cockerham (1969) presented a general
algorithm for finding the probability of identity for
alleles a, ak and b, bk at loci A and B, as shown in
Appendix A.

Alternatively, consider an inbred individual X,
the offspring of a mating of full-sibs V1 and V2
who have parents U1 and U2 (Fig. 2). The one- and
two-locus inbreeding coefficients are FX=1/4 and
F*X(c)=(1xc)2b/2+c2/8 (Table 2, Appendix A). The
two-locus value reduces to 1/4 when c=0 and to 1/16
when c=1/2, i.e. FX and F 2

X, respectively. These re-
sults also follow as the probabilities of identity for
alleles carried by two first cousins, one with parent V1
and one with parent V2 (HW11, Table 2).

3. Descendants of half-sibs

For unilineal relatives V1, V2 (e.g. Fig. 1), the in-
breeding coefficient FX of their offspring X is the
probability k1 they share and transmit a pair of alleles
ibd, and the path-counting equation is for identity
resulting from that pair of alleles descending from
common ancestor U2. The actual state of identity can
be indicated by the variable ǩ1 that takes the value 1
for identical alleles and 0 for non-identity. Taking
expectations over all loci E(ǩ1i)=k1 and Var(ǩ1i)=
k1(1xk1). At two loci, i, j, the actual inbreeding
coefficient is F̌X* (c)=ǩ1iǩ1j and this has expectation
FX* (c)=E(ǩ1iǩ1j)=F 2

X+Cov(ǩ1i, ǩ1j). The variance in

the actual inbreeding of X averaged over the genome
involves the sum of the variances at individual sites
and the covariances at pairs of sites. With a large
number of sites, it is the contribution of the co-
variances that dominates.

The relatedness of unilineal relatives also depends
only on the measure k1. If ǩ1i indicates actual ibd sta-
tus at locus i for the half-sibs Y1,Y2 with common
parent X (Fig. 1)

E( �kk1i )=hX;X=
1

2
(1+FX),

E( �kk1i
�kk1j )=hX;X* (c)=FX+b[1x2FX+FX*(c)],

Cov( �kk1i , �kk1j )=hX;X* (c)xh2
X;X=hX;X* (c)xhX;X* (1=2):

To predict the sharing of ibd pairs of alleles by in-
dividuals who are descendants of Y1 and Y2 but are
otherwise unrelated, note that the probability of a
gametic pair of alleles is transmitted from parent to
offspring is (1xc)/2 and to t-th generation descen-
dants is [(1xc)/2]t. For example, t=1 is for half-uncle
nephew (e.g. Y1 and the offspring of Y2) and t=2 is
for half-cousins (e.g offspring of Y1 and Y2) or half-
great uncle-great nephew (e.g. Y1 with a grandson of
Y2). For descendants Z1, Z2 of Y1, Y2 such that
there are t individuals (excluding Z1, Z2, X) in the
loop from Z1 to X to Z2, E(ǩ1i, ǩ1j)=yZ1 ;Z2* (c) and

E( �kk1i
�kk1j )=

1xc

2

� �t

hX;X* (c): (2)

To facilitate calculations over multiple generations,
and to integrate over the chromosomes, we adopt
methods used previously (HW11). Details are given in
Appendix B. Letting b=(1xc)/2, we can write the
right-hand side of eqn (2) as gnanb

n, and recognizing
that setting c=1/2, b=1/4 (independent loci) gives the
product of expected values E(ǩ1i), E(ǩ1j) :

Cov( �kk1i , �kk1j )=g
n

an bnx
1

4

� �n� �
:

The range of values of n, and the values of an, depend
on the pedigree of the common ancestor X and we
give common examples of hX ;X* (c) in Table 2 (essen-
tially for t=1).

Assuming Haldane’s mapping function, for a
chromosome of length l Morgans, and computing the
variance of actual relationship as the mean covariance
over all pairs of loci,

Var( �kk1 , l)=g
n
anwn(l),

where (Appendix B)

wn(l)=
1

2l2
1

4

� �n

gn

r=1

n

r

� � 2rlx1+ex2rl

r2
, no1,

0, nf0:

8><
>:

(3)

U1 U2

V1 V2

X

Y1 Y2

Fig. 2. Pedigree for HS offspring Y1,Y2 of individual X,
the offspring of FS parents.
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For the genome as a whole, letting li be the map length
of chromosome i and gili=L, the variance is
gili

2Var(ǩ1, li)/L
2.

If X is the result of a parent-offspring (PO) mating
or a full-sib (FS) mating, for example, FX=1/4; but
we show in Table 2 that the hX ;X* (c) values are differ-
ent unless c=0 or c=1/2. This leads to different var-
iances of the actual identities for half-sib progeny of X
and pairs of their descendants :

Var( �kk1 , l)

=

PO: 16wt+5(l)x16wt+4(l)

+8wt+3(l)x
3
4
wt+1(l)+

1
2
wt(l),

FS: 32wt+6(l)x32wt+5(l)+18wt+4(l)

x7wt+3(l)+
17
4
wt+2(l)x

3
2
wt+1(l)+

9
16
wt(l):

8>>>>><
>>>>>:

(4)

The above results give the variance of ǩ1. As Y1 and
Y2 and their descendants cannot share both genes at a
locus (i.e. k2=0), the variation in actual relationship
2�hh=�kk2+�kk1=2 is given by Var(ǩ1, l)/4 and in actual co-
ancestry �hh=�kk2=2+�kk1=4 by Var(ǩ1, l)/16.

4. Descendants of full-sibs

We now consider the case of matings between female
X1 and male X2, unrelated to each other but with
inbreeding coefficients FX1 and FX2, respectively, and
evaluate the variance in actual relationship among
their full-sib progeny Y1 and Y2 and descendants of
these such as first cousins.

Full-sibs can share 0, 1 or 2 alleles at each locus. As
haplotypes are transmitted independently by the two
parents, the variance in relationship among full-sibs is
simply the sum of the components from paternal and
maternal half-sibs with relevant inbreeding coeffi-
cients.

The actual state for Y1 and Y2 sharing pairs of
alleles at each of two loci, i and j, is ǩ2iǩ2j=
ǩ1i

mǩ1i
pǩ1j

mǩ1j
p where m and p denote maternally and

paternally derived alleles. Hence, from the definition

of the two-locus coancestry,

E( �kk2i
�kk2j )=E( �kkm1i �kk

m

1j )E( �kk
p

1i
�kk
p

1j )=hX1;X1* (c)hX2;X2* (c),

which reduces to hX1 ;X1hX2 ;X2=(1+FX1)(1+FX2)/4
if c=0, b=1/2 and to the square of that if c=1/2,
b=1/4. Evaluation depends on the pedigrees of X1
and X2, but is straightforward by expansion in terms
of coefficients b as above and in Table 2.

The sharing of single copies among descendants of
the full-sibs can be evaluated extending the methods
for descendants of half-sibs. Suppose that parents
X1, X2 have full-sib offspring Y1, Y2 and Y2 has off-
spring Z2. Then Y1 and Z2 are uncle and nephew and
they can have only one ibd allele at each locus. Either
X1 or X2 can transmit an entire haplotype to both Y1
and Y2 and the latter haplotype can be transmitted to
Z2. This probability of the event is [hX1 ;X1* (c)+
hX2 ;X2* (c)](1xc)/2 and it results in Y1 and Z2 sharing
the haplotype. Alternatively, X1 can transmit ibd
alleles at one locus and X2 can transmit ibd alleles
at the other locus so Y1,Y2 share two pairs of ibd
alleles : if Y2 then transmits these ibd alleles to
Z2 then uncle and nephew again share ibd alleles
at both loci. The probability of this event is
chX1 ;X1hX2 ;X2 so

E( �kk1i
�kk1j )=

1

2
(1xc)[hX1;X1* (c)+hX2;X2* (c)]+chX1;X1hX2;X2,

(5)

which reduces to (hX1 ;X1+hX2 ;X2)/2=(2+FX1+FX2)/4
if c=0, and to the square of that if c=1/2. For great
uncle-great nephew and more distant uncle–nephew
relationships, the probabilities are obtained as pro-
ducts of terms in eqn (5) by powers of (1xc)/2.

Similarly, for cousins Z1,Z2, the offspring of Y1,Y2
and the grand-offspring of X1,X2

E( �kk1i
�kk1j )=

1

2

1xc

2

� �2

r[hX1;X1* (c)+hX2;X2* (c)]

+
1

2
c2hX1;X1hX2;X2:

(6)

Table 2. Correspondence between relationship and identity coefficients for common ancestor X at linked loci as a
function of recombination rate c, b=[(1xc)2+c2]/2 and of b=(1xc)/2.

Parents of X
Relationship-equivalent
offspring FX F *X(c) hX ;X* (c)=FX+b[1x2FX+F *X(c)]

One parent (selfing) HS 1
2

b 16b4x16b3+8b2x2b+3
4

Parent and offspring Half-uncle nephew 1
4

1
2
(1xc)b 16b5x16b4+8b3x3

4
b+1

2

FS First cousins 1
4

1
2
(1xc)2b+1

8
c2 32b6x32b5+18b4x7b3+17

4
b2x3

2
b+ 9

16

HS Half cousins 1
8

1
4
(1xc)2b 16b6x16b5+8b4x2b3+13

4
b2x3

2
b+1

2

Uncle–niece Cousins once removed 1
8

1
4
(1xc)3b+ 1

16
(1xc)c2 32b7x32b6+18b5x7b4+9

4
b3+5

2
b2x23

16
b+1

2
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Values for later descendants are obtained by scaling
eqn (6), for example, by (1xc)/2 for cousins once
removed and by [(1xc)/2]2 for second cousins or
cousins twice removed. All expressions for E(ǩ1iǩ1j)
can be written as polynomials in b and evaluated ac-
cordingly.

5. Mapping functions, map length and physical genome

length

In the analysis undertaken in this paper and in pre-
vious analyses of variation in genome sharing (HW11
and references cited therein) and indeed in other
studies on other statistics such as distribution of
lengthsof shared regions (Stam,1980;Donnelly, 1983),
the Haldane mapping function (Haldane, 1919), c=
(1xex2l)/2, has been used. Not least, this is math-
ematically tractable, and explicit integration of the
formulae-relating recombination fraction to map
length is feasible, as in eqn (3). Haldane’s function
does not allow for interference, however, and various
others have been constructed to incorporate inter-
ference. The importance of this assumption in var-
iances of genome sharing, whether or not parents are
inbred, has not been checked.

In mammalian studies, the Kosambi mapping
function (Kosambi, 1944), c=(1xex4l)/[2(1+ex4l)]
is most widely used, including in the published human
linkage map (Matise et al., 2007). For both functions
cpl as lp0 and cp0.5 as lp‘ but, for intermediate
values of l, c is relatively larger for the Kosambi
function: for example, for l=0.5, where the absolute
difference is near its maximum, for Haldane c=
0.316 and for Kosambi c=0.381. To assess the de-
pendence of the variation in genome sharing on the
mapping function, numerical integration was used to
evaluate Appendix eqn (B2), replacing the term
(1+ex2(xxy))/4 for b=(1xc)/2 by [2x (1xex4(xxy))/
(1+ex4(xxy))]/4. Numerical integration using bivari-
ate Simpson’s rule was used, and precision was
checked by concurrent numerical integration of the
Haldane function.

The variance of actual relationship is smaller
with the Kosambi than the Haldane mapping func-
tion (Appendix C), as would be expected because
the recombination fraction is, for given map length,
larger with the former. The disparity increases
the longer the chromosome, but it already differs
little between l of 2 and 3M. Although the degree
of relationship and type of relationship, for example,
lineal or collateral, have some effect, it is rather
small. Hence, as an approximate conclusion, the
SD of relationship for l of 0.5, 1, 2 and 3M is
about 4, 7, 10 and 11% smaller, respectively, with
the Kosambi function incorporating interference
(Appendix C). Although these are clear differences,
the qualitative impact is rather small, and likely to

be a little under 10% for the human genome as a
whole.

Observations of genomic identity between chro-
mosomes at the molecular level are initially likely to
be in terms of the physical length, measured in
Megabases not map lengths. Most or all calculations
in this and other work on prediction of lengths of
genome sharing are at the level of map distance. The
conversion from one to the other then depends on the
correspondence of the physical and linkage maps.
This varies among chromosomes and species, around
the typical mammalian figure of 1 cm/Mb, depending
inter alia on positions of centromeres and repetitive
regions, and the ratio of Morgans to Mb depends on
chromosome length and differs among chromosomes;
for example, the chicken has a very high M/Mb ratio
relative to mammals and indeed relative to the zebra
finch, but for both species of birds, the recombination
rates on the microchromosomes are relatively high
(Stapley et al., 2008). For human chromosomes,
although the linkage map is not far from linearly re-
lated to the physical map for the longer metacentric
chromosomes, the relationship is somewhat sigmoi-
dal ; whereas for the shortest acrocentric chromo-
somes, no recombination are seen for over 25% of
the centromeric end (Matise et al., 2007 and http://
compgen.rutgers.edu/RutgersMap/MapBrowser.
aspx). Generalizations are therefore difficult, but it
does imply a need to convert the initially observed
lengths of shared regions into map distances before
drawing inferences from analyses such as that pre-
sented here.

6. Discussion

The methodology given here fills a small lacuna in the
analysis of variation in actual relationship, but to our
knowledge has not been analysed previously. The
formulae may be complicated, but the algorithms are
easy to use.

As an example, consider the case of variance, ex-
pressed as SD, in actual relationship of half-sibs when
the common parent of these sibs has undergone in-
breeding (Fig. 3a) by one of several routes. The SD is
not greatly reduced by the parental inbreeding, even
in the case of selfing (F=0.5), but the coefficient of
variation CV (Fig. 3b) is reduced substantially more,
because the expected relationship increases with F.
The values differ only very slightly according to the
mode of inbreeding for given F for example, by an
offspring-parent compared with a full-sib mating.

Also consider comparisons between different levels
of relationship according to the degree of inbreeding
of the parent. For a single locus, or completely linked
loci, from eqn (2) setting c=0 and hence F(X)=
F*X(c),Var(ǩ1, 0)=(1/2)t+1(1+FX)[1x(1/2)t+1(1+FX)].
Thus, for half-sib offspring (t=0), the variance is

Relationship variation under inbreeding 271



highest when FX=0; but for t>0, it is highest when
FX=1. Examples shown in Fig. 4 comparing var-
iances for half-sibs and half-cousins as a function
of map length and degree of inbreeding of the parent
indicate that, as map length increases, the ranking
of variances remains the same, i.e. decreasing with FX

for half-sibs and increasing with FX for half-cousins.
The (likely) explanation is that all half-sib offspring
inherit a haplotype from their parent, which are
therefore increasingly similar the more inbred is the
parent. In contrast, a grandoffspring has a 50%
chance of inheriting no haplotype from the inbred
parent, and the similarity of these is more than out-
weighed by the divergence between the inbred and
non-inbred parent.

For offspring of full-sib matings, however, where
for individual loci or no recombination Var(ǩ1, 0)/
(2+FX1+FX2)[1x(2+FX1+FX2)/4] (from eqns (5) or
(6)), the variance of relationship falls as inbreeding
of either parent rises. This is as would be expected
from the preceding argument on half-sibs because
the grandoffspring must inherit from one or other
grandparent.

This work was supported in part by NIH grant (GM
075091) and the Leverhulme Trust. The authors thank Ian
White for helpful comments.

Appendix A. Derivation of two-locus descent measures

Weir & Cockerham (1969) presented a general
algorithm for finding the probability of identity by
descent for alleles a, ak and b, bk at loci A and B, re-
spectively. Depending on whether these four alleles
are transmitted on two gametes (ab from one individ-
ual U1 and akbk from another individual U2), or three
gametes (ab from one individual U1, ak from a second
individual U2 and bk from a third individual U3), or
four gametes (a, b, ak, bk from different individuals
U1, U2, U3, U4) the probabilities are written as
hU1 ;U2* (c), cU1 ;U2,U3* (c) or dU1,U2 ;U3,U4* (c), respectively.
Calculation of any of these probabilities proceeds by
tracing alleles back to founding individuals in a pedi-
gree, taking recombination into account when
necessary.

For individual X in Fig. 1, the offspring of half-
sib parents, the two pairs of alleles ab, akbk are
from individuals V1, V2 and may all have descended
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Fig. 3. (a) SD and (b) CV of actual relationship as a
function of map length (l) of HS offspring of individuals
whose parents were unrelated (F=0), or obtained by
uncle-niece or HS mating (F=1/8), or obtained by FS or
PO mating (F=1/4), or by selfing (F=1/2). Expected
relationships for these values of F are 0.25, 0.281, 0.312
and 0.375, respectively.
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from U2 so

FX*(c)=hV1;V2* (c)

=
1xc

2

� �2

[hU1;U2* (c)+hU1;U3* (c)+hU2;U2* (c)

+hU2;U3* (c)]+
1xc

2

� �
c

2

� �
[cU1;U2,U3* (c)

+cU1;U3,U2* (c)+cU2;U2,U3* (c)+cU2;U3,U2* (c)

+cU2;U1,U2* (c)+cU2;U2,U1* (c)+cU3;U1,U2* (c)

+cU3;U2,U1* (c)]+
c

2

� �2
[dU1,U2;U2,U3* (c)

+dU1,U2;U3,U2* (c)+dU2,U1;U2,U3* (c)

+dU2,U1;U3,U2* (c)]:

Ignoring the terms that are zero (those with alleles at
the same site coming from different ancestors), and
using eqn (1) with FU2=FU2* (c)=0

FX* (c)=
1xc

2

� �2

hU2;U2* (c)

=
1

4
b(1xc)2,

where b=[(1xc)2+c2]/2. Setting c=0 gives the one-
locus result FX=1/8, and setting c=1/2 gives the
square of that.

For individual X in Fig. 2, the offspring of full-sib
parents, the two pairs of alleles ab, akbk are from in-
dividuals V1, V2 and then from U1 and U2 so

FX*(c)=hV1;V2* (c)

=
1xc

2

� �2

[hU1;U1* (c)+hU1;U2* (c)+hU2;U1* (c)

+hU2;U2* (c)]+2
1xc

2

� �
c

2

� �
[cU1;U1,U2* (c)

+cU1;U2,U1* (c)+cU2;U1,U2* (c)+cU2;U2,U1* (c)]

+
c

2

� �2
[dU1,U2;U1,U2* (c)+dU1,U2;U2,U1* (c)

+dU2,U1;U1,U2* (c)+dU2,U1;U2,U1* (c)]:

Ignoring the terms that are zero, and using eq (1) with
FU1=FU1* (c)=FU2=FU2* (c)=0.

FX*(c)=
1xc

2

� �2

[hU1;U1* (c)+hU2;U2* (c)]

+
c

2

� �2
[dU1,U2;U1,U2* (c)+dU2,U1;U2,U1* (c)]

=
1xc

2

� �2

[(1xc)2+(c)2]+
c

2

� �2
2

1

2

� �2

=
1

2
b(1xc)2+

1

8
c2:

Setting c=0 gives the one-locus result FX=1/4, and
setting c=1/2 gives the square of that.

Appendix B. Evaluation of covariances

(based on HW11)

Let b=(1xc)/2, the probability a pair of loci are
jointly transmitted between generations, and express
powers of c as polynomials in b :

cn= g
n

i=0

n
i

� �
(x2b)i:

Writing hX ;X* (c)=E(ǩi1ǩ1j) as a polynomial (examples
in Table 2)

E( �kki1 �kk1j )= g
N

n=0
anb

n,

and noting that the covariance is zero for unlinked
loci (b=1/4),

Cov( �kki1 , �kk1j )= g
N

n=0
an bnx

1

4

� �n� �
: (B1)

Assuming Haldane’s mapping function, b=(1xc)/
2=(1+ex2d)/4 where d is the map distance between
the loci, so bnx(1/4)n=(1/4)n[(1+ex2d)nx1].
Integrating over all pairs of loci, we define

wn(l)=
2

l2
1

4

� �n Z l

x=0

Z x

y=0
[(1+ex2(xxy))nx1] dy dx:

(B2)

Integration of eqn (B2) gives eqn (3) in the text.

Appendix C. Effect of mapping function

Appendix Table C1 SD of actual relationship
computed using Kosambi mapping function divided by
SD of actual relationship computed using the Haldane
mapping function for different map lengths and
pedigree relationships, including cases where the
common ancestor is inbred.

Map length (M)

Pedigree relationship* 0.5 1.0 2.0 3.0

GP–GO 0.972 0.931 0.884 0.865
GGGP–GGGO 0.965 0.928 0.892 0.878
G4P–G4O 0.960 0.929 0.902 0.892
HS 0.959 0.929 0.899 0.892
Half-cousins 0.962 0.929 0.898 0.885
HS, parent by selfing 0.958 0.926 0.906 0.899
HS, parent by PO mating 0.959 0.926 0.902 0.893

*P, parent ; O, offspring ; GP, grandparent ; GGGP, great

great grandparent.
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