684 research outputs found

    New broad 8Be nuclear resonances

    Full text link
    Energies, total and partial widths, and reduced width amplitudes of 8Be resonances up to an excitation energy of 26 MeV are extracted from a coupled channel analysis of experimental data. The presence of an extremely broad J^pi = 2^+ ``intruder'' resonance is confirmed, while a new 1^+ and very broad 4^+ resonance are discovered. A previously known 22 MeV 2^+ resonance is likely resolved into two resonances. The experimental J^pi T = 3^(+)? resonance at 22 MeV is determined to be 3^-0, and the experimental 1^-? (at 19 MeV) and 4^-? resonances to be isospin 0.Comment: 16 pages, LaTe

    Syzygies of torsion bundles and the geometry of the level l modular variety over M_g

    Full text link
    We formulate, and in some cases prove, three statements concerning the purity or, more generally the naturality of the resolution of various rings one can attach to a generic curve of genus g and a torsion point of order l in its Jacobian. These statements can be viewed an analogues of Green's Conjecture and we verify them computationally for bounded genus. We then compute the cohomology class of the corresponding non-vanishing locus in the moduli space R_{g,l} of twisted level l curves of genus g and use this to derive results about the birational geometry of R_{g, l}. For instance, we prove that R_{g,3} is a variety of general type when g>11 and the Kodaira dimension of R_{11,3} is greater than or equal to 19. In the last section we explain probabilistically the unexpected failure of the Prym-Green conjecture in genus 8 and level 2.Comment: 35 pages, appeared in Invent Math. We correct an inaccuracy in the statement of Prop 2.

    Chaotic Phenomenon in Nonlinear Gyrotropic Medium

    Full text link
    Nonlinear gyrotropic medium is a medium, whose natural optical activity depends on the intensity of the incident light wave. The Kuhn's model is used to study nonlinear gyrotropic medium with great success. The Kuhn's model presents itself a model of nonlinear coupled oscillators. This article is devoted to the study of the Kuhn's nonlinear model. In the first paragraph of the paper we study classical dynamics in case of weak as well as strong nonlinearity. In case of week nonlinearity we have obtained the analytical solutions, which are in good agreement with the numerical solutions. In case of strong nonlinearity we have determined the values of those parameters for which chaos is formed in the system under study. The second paragraph of the paper refers to the question of the Kuhn's model integrability. It is shown, that at the certain values of the interaction potential this model is exactly integrable and under certain conditions it is reduced to so-called universal Hamiltonian. The third paragraph of the paper is devoted to quantum-mechanical consideration. It shows the possibility of stochastic absorption of external field energy by nonlinear gyrotropic medium. The last forth paragraph of the paper is devoted to generalization of the Kuhn's model for infinite chain of interacting oscillators

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Besov priors for Bayesian inverse problems

    Get PDF
    We consider the inverse problem of estimating a function uu from noisy, possibly nonlinear, observations. We adopt a Bayesian approach to the problem. This approach has a long history for inversion, dating back to 1970, and has, over the last decade, gained importance as a practical tool. However most of the existing theory has been developed for Gaussian prior measures. Recently Lassas, Saksman and Siltanen (Inv. Prob. Imag. 2009) showed how to construct Besov prior measures, based on wavelet expansions with random coefficients, and used these prior measures to study linear inverse problems. In this paper we build on this development of Besov priors to include the case of nonlinear measurements. In doing so a key technical tool, established here, is a Fernique-like theorem for Besov measures. This theorem enables us to identify appropriate conditions on the forward solution operator which, when matched to properties of the prior Besov measure, imply the well-definedness and well-posedness of the posterior measure. We then consider the application of these results to the inverse problem of finding the diffusion coefficient of an elliptic partial differential equation, given noisy measurements of its solution.Comment: 18 page

    Integral Grothendieck-Riemann-Roch theorem

    Full text link
    We show that, in characteristic zero, the obvious integral version of the Grothendieck-Riemann-Roch formula obtained by clearing the denominators of the Todd and Chern characters is true (without having to divide the Chow groups by their torsion subgroups). The proof introduces an alternative to Grothendieck's strategy: we use resolution of singularities and the weak factorization theorem for birational maps.Comment: 24 page

    Simulations of partially coherent focal plane imaging arrays: Fisher matrix approach to performance evaluation

    Get PDF
    Focal plane arrays of bolometers are increasingly employed in astronomy at far--infrared to millimetre wavelengths. The focal plane fields and the detectors are both partially coherent in these systems, but no account has previously been taken of the effect of partial coherence on array performance. In this paper, we use our recently developed coupled--mode theory of detection together with Fisher information matrix techniques from signal processing to characterize the behaviour of partially coherent imaging arrays. We investigate the effects of the size and coherence length of both the source and the detectors, and the packing density of the array, on the amount of information that can be extracted from observations with such arrays.Comment: 14 pages, 7 figures, submitted to MNRAS 7th March 200

    Threshold Effects in Multi-channel Coupling and Spectroscopic Factors in Exotic Nuclei

    Get PDF
    In the threshold region, the cross section and the associated overlap integral obey the Wigner threshold law that results in the Wigner-cusp phenomenon. Due to flux conservation, a cusp anomaly in one channel manifests itself in other open channels, even if their respective thresholds appear at a different energy. The shape of a threshold cusp depends on the orbital angular momentum of a scattered particle; hence, studies of Wigner anomalies in weakly bound nuclei with several low-lying thresholds can provide valuable spectroscopic information. In this work, we investigate the threshold behavior of spectroscopic factors in neutron-rich drip-line nuclei using the Gamow Shell Model, which takes into account many-body correlations and the continuum effects. The presence of threshold anomalies is demonstrated and the implications for spectroscopic factors are discussed.Comment: Accepted in Physical Review C Figure correcte

    Self-similar Approximants of the Permeability in Heterogeneous Porous Media from Moment Equation Expansions

    Full text link
    We use a mathematical technique, the self-similar functional renormalization, to construct formulas for the average conductivity that apply for large heterogeneity, based on perturbative expansions in powers of a small parameter, usually the log-variance σY2\sigma_Y^2 of the local conductivity. Using perturbation expansions up to third order and fourth order in σY2\sigma_Y^2 obtained from the moment equation approach, we construct the general functional dependence of the transport variables in the regime where σY2\sigma_Y^2 is of order 1 and larger than 1. Comparison with available numerical simulations give encouraging results and show that the proposed method provides significant improvements over available expansions.Comment: Latex, 14 pages + 5 ps figure
    corecore