2,789 research outputs found

    The competitiveness of Ukraine and Poland

    Get PDF
    Each economy and each enterprise is focused on winning rivalry with its competitors. They can achieve this goal through development and maintenance of their competitive advantage. Nowadays, regional and national economies compete in an ever so fast changing global environment. The World Economic Forum (WEF) created a system of measuring competitiveness that uses 12 pillars of competitiveness. The ranking based on this methodology is published annually and covers most countries in the world. It allows to compare the competitiveness of national economies, which are grouped according to their stage of development. Within the ranking two neighboring countries – Ukraine and Poland – receive ranks relatively distant to one another. This is due to various reasons of economic, legal as well as political nature amongst others. This paper aims at characterizing differences in their competitive potential that could allow researchers and politicians to unveil reasons of differences that occur between these economies regarding their competitive positions

    The politics of workers' inquiry

    Get PDF

    Almost-Euclidean subspaces of 1N\ell_1^N via tensor products: a simple approach to randomness reduction

    Get PDF
    It has been known since 1970's that the N-dimensional 1\ell_1-space contains nearly Euclidean subspaces whose dimension is Ω(N)\Omega(N). However, proofs of existence of such subspaces were probabilistic, hence non-constructive, which made the results not-quite-suitable for subsequently discovered applications to high-dimensional nearest neighbor search, error-correcting codes over the reals, compressive sensing and other computational problems. In this paper we present a "low-tech" scheme which, for any a>0a > 0, allows to exhibit nearly Euclidean Ω(N)\Omega(N)-dimensional subspaces of 1N\ell_1^N while using only NaN^a random bits. Our results extend and complement (particularly) recent work by Guruswami-Lee-Wigderson. Characteristic features of our approach include (1) simplicity (we use only tensor products) and (2) yielding "almost Euclidean" subspaces with arbitrarily small distortions.Comment: 11 pages; title change, abstract and references added, other minor change

    Amenability of algebras of approximable operators

    Get PDF
    We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening known results and developing new techniques to determine whether or not a given Banach space carries an amenable algebra of approximable operators. Using these techniques, we are able to show, among other things, the non-amenability of the algebra of approximable operators on Tsirelson's space.Comment: 20 pages, to appear in Israel Journal of Mathematic

    The "classic" triad presentation of mucinous bronchiolo-alveolar carcinoma

    Full text link
    peer reviewedThe case of a 59-year-old female complaining of cough of recent onset, abundant salty expectoration and lung condensation is presented. This "triad" constitutes a rare but nearly pathognomonic presentation of mucinous bronchioloalveolar carcinoma (BAC) of the lung

    Hastings' additivity counterexample via Dvoretzky's theorem

    Full text link
    The goal of this note is to show that Hastings' counterexample to the additivity of minimal output von Neumann entropy can be readily deduced from a sharp version of Dvoretzky's theorem on almost spherical sections of convex bodies.Comment: 12 pages; v.2: added references, Appendix A expanded to make the paper essentially self-containe

    Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries

    Get PDF
    High-density silicon composite anodes show large volume changes upon charging/discharging triggering the reformation of the solid electrolyte interface (SEI), an interface initially formed at the silicon surface. The question remains how the reformation process and accompanied material evolution, in particular for industrial up-scalable cells, impacts cell performance. Here, we develop a correlated workflow incorporating X-ray microscopy, field-emission scanning electron microscopy tomography, elemental imaging and deep learning-based microstructure quantification suitable to witness the structural and chemical progression of the silicon and SEI reformation upon cycling. The nanometer-sized SEI layer evolves into a micron-sized silicon electrolyte composite structure at prolonged cycles. Experimental-informed electrochemical modelling endorses an underutilisation of the active material due to the silicon electrolyte composite growth affecting the capacity. A chemo-mechanical model is used to analyse the stability of the SEI/silicon reaction front and to investigate the effects of material properties on the stability that can affect the capacity loss

    Exponential and moment inequalities for U-statistics

    Full text link
    A Bernstein-type exponential inequality for (generalized) canonical U-statistics of order 2 is obtained and the Rosenthal and Hoffmann-J{\o}rgensen inequalities for sums of independent random variables are extended to (generalized) U-statistics of any order whose kernels are either nonnegative or canonicalComment: 22 page

    A novel experimental set-up for in-situ microstructural characterization during continuous strain path change

    Get PDF
    Strain path change is a typical phenomenon during continuous stamping operations of sheet metal for a variety of applications including automotive body parts. During stamping, a punch continuously deforms a metal sheet to produce a desired geometry while following various strain path transitions depending on overall design of the stamping process. The strain path change can potentially alter the expected forming limit of the material. Previous researchers investigated the effect of changing strain path by loading sample in two distinct steps. Typically, between the steps the sample is unloaded before being re-loaded in the new strain path. This practice reflects the key challenge in elucidating this strain path dependent deformation, which is the ability to control the strain path change in a single deformation stage in an experimental set-up. In this work, a novel testing rig and specimen geometry that is capable of changing the strain path of a sample continuously without unloading the specimen were conceptualised, modelled and subsequently manufactured. Using this apparatus, the specimen was deformed in the uniaxial strain path in the first step before being deformed biaxially without unloading in between the steps. Thus, the apparatus ensures that the sample undergoes a continuous strain path change without unloading between the steps. The size of this mechanical test rig permits it to be placed inside a scanning electron microscope (SEM) chamber in order to study strain path transition in-situ to highlight strain localization and related microstructural changes in real time. Utilizing this test set-up, strain path change and corresponding strain values along each strain path were evaluated. The changes in material microstructure were concurrently investigated using in-situ SEM and electron back scattered diffraction (EBSD) analysis

    Measurement of the Luminosity in the ZEUS Experiment at HERA II

    Full text link
    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.Comment: 25 pages, 11 figure
    corecore